高二化學知識點【優選】
高二化學知識點 篇1
1、中和熱概念:在稀溶液中,酸跟堿發生中和反應而生成1molH2O,這時的反應熱叫中和熱。
2、強酸與強堿的中和反應其實質是H+和OH—反應,其熱化學方程式為:
H+(aq)+OH—(aq)=H2O(l)ΔH=—57、3kJ/mol
3、弱酸或弱堿電離要吸收熱量,所以它們參加中和反應時的中和熱小于57、3kJ/mol。
4、蓋斯定律內容:化學反應的反應熱只與反應的始態(各反應物)和終態(各生成物)有關,而與具體反應進行的途徑無關,如果一個反應可以分幾步進行,則各分步反應的反應熱之和與該反應一步完成的反應熱是相同的。
5、燃燒熱概念:25℃,101kPa時,1mol純物質完全燃燒生成穩定的`化合物時所放出的熱量。燃燒熱的單位用kJ/mol表示。
注意以下幾點:
①研究條件:101kPa
②反應程度:完全燃燒,產物是穩定的氧化物。
③燃燒物的物質的量:1mol
④研究內容:放出的熱量。(ΔH<0,單位kJ/mol)
高二化學知識點 篇2
離子檢驗
離子所加試劑現象離子方程式
Cl-AgNO3、稀HNO3產生白色沉淀Cl-+Ag+=AgCl↓SO42-稀HCl、BaCl2白色沉淀SO42-+Ba2+=BaSO4↓
四、除雜
注意事項:為了使雜質除盡,加入的試劑不能是“適量”,而應是“過量”;但過量的試劑必須在后續操作中便于除去。
物質的量的單位――摩爾
1.物質的量(n)是表示含有一定數目粒子的集體的物理量。
2.摩爾(mol):把含有6.02×1023個粒子的任何粒子集體計量為1摩爾。
3.阿伏加德羅常數:把6.02X1023mol-1叫作阿伏加德羅常數。
4.物質的量=物質所含微粒數目/阿伏加德羅常數n=N/NA
5.摩爾質量(M)(1)定義:單位物質的量的物質所具有的質量叫摩爾質量.(2)單位:g/mol或g..mol-1(3)數值:等于該粒子的相對原子質量或相對分子質量.
6.物質的量=物質的質量/摩爾質量(n=m/M)
氣體摩爾體積
1.氣體摩爾體積(Vm)(1)定義:單位物質的量的氣體所占的體積叫做氣體摩爾體積.(2)單位:L/mol
2.物質的量=氣體的體積/氣體摩爾體積n=V/Vm
3.標準狀況下,Vm=22.4L/mol
物質的量在化學實驗中的應用
1.物質的量濃度.
(1)定義:以單位體積溶液里所含溶質B的物質的量來表示溶液組成的物理量,叫做溶質B的物質的濃度。(2)單位:mol/L(3)物質的量濃度=溶質的物質的量/溶液的體積CB=nB/V
2.一定物質的量濃度的配制
(1)基本原理:根據欲配制溶液的.體積和溶質的物質的量濃度,用有關物質的量濃度計算的方法,求出所需溶質的質量或體積,在容器內將溶質用溶劑稀釋為規定的體積,就得欲配制得溶液.
(2)主要操作
a.檢驗是否漏水.
b.配制溶液1計算.2稱量.3溶解.4轉移.5洗滌.6定容.7搖勻8貯存溶液.
注意事項:
A選用與欲配制溶液體積相同的容量瓶.
B使用前必須檢查是否漏水.
C不能在容量瓶內直接溶解.
D溶解完的溶液等冷卻至室溫時再轉移.
高二化學知識點 篇3
第一章氮族元素
一、氮族元素N(氮)、P(磷)、As(砷)、Sb(銻)、Bi(鉍)
相似性遞變性
結構最外層電子數都是5個原子半徑隨N、P、As、Sb、Bi順序逐漸增大,核對外層電子吸引力減弱
性質最高價氧化物的通式為:R2O5
最高價氧化物對應水化物通式為:HRO3或H3RO4
氣態氫化物通式為:RH3
最高化合價+5,最低化合價-3單質從非金屬過渡到金屬,非金屬性:N>P>As,金屬性:Sb 最高價氧化物對應水化物酸性逐漸減弱 酸性:HNO3>H3PO4>H3AsO4>H3SbO4 與氫氣反應越來越困難 氣態氫化物穩定性逐漸減弱 穩定性:NH3>PH3>AsH3 二、氮氣(N2) 1、分子結構電子式:結構式:N≡N(分子里N≡N鍵很牢固,結構很穩定) 2、物理性質:無色無味氣體,難溶于水,密度與空氣接近(所以收集N2不能用排空氣法!) 3、化學性質:(通常氮氣的化學性質不活潑,很難與其他物質發生反應,只有在高溫、高壓、放電等條件下,才能使N2中的共價鍵斷裂,從而與一些物質發生化學反應) N2+3H22NH3N2+O2=2NO3Mg+N2=Mg3N2Mg3N2+6H2O=3Mg(OH)2↓+2NH3↑ 4、氮的固定:將氮氣轉化成氮的化合物,如豆科植物的根瘤菌天然固氮 三、氮氧化物(N2O、NO、N2O3、NO2、N2O4、N2O5) N2O—笑氣硝酸酸酐—N2O5亞硝酸酸酐—N2O3重要的大氣污染物—NONO2 NO—無色氣體,不溶于水,有毒(毒性同CO),有較強還原性2NO+O2=2NO2 NO2—紅棕色氣體(顏色同溴蒸氣),有毒,易溶于水,有強氧化性,造成光化學煙霧的主要因素 3NO2+H2O=2HNO3+NO2NO2N2O4(無色)302=2O3(光化學煙霧的`形成) 鑒別NO2與溴蒸氣的方法:可用水或硝酸銀溶液(具體方法及現象從略) NO、NO2、O2溶于水的計算:用總方程式4NO2+O2+2H2O=4HNO34NO+3O2+2H2O=4HNO3進行計算 四、磷 白磷紅磷 不同點1.分子結構化學式為P4,正四面體結構,化學式為P,結構復雜,不作介紹 2.顏色狀態白色蠟狀固體紅棕色粉末狀固體 3.毒性劇毒無毒 4.溶解性不溶于水,可溶于CS2不溶于水,不溶于CS2 5.著火點40℃240℃ 6.保存方法保存在盛水的容器中密封保存 相同點1.與O2反應點燃都生成P2O5,4P+5O22P2O5 P2O5+H2O2HPO3(偏磷酸,有毒)P2O5+3H2O2H3PO4(無毒) 2.與Cl2反應2P+3Cl22PCl32P+5Cl22PCl5 轉化白磷紅磷 五、氨氣 1、物理性質:無色有刺激性氣味的氣體,比空氣輕,易液化(作致冷劑),極易溶于水(1:700) 2、分子結構:電子式:結構式:(極性分子,三角錐型,鍵角107°18′) 3、化學性質:NH3+H2ONH3·H2ONH4++OH-(注意噴泉實驗、NH3溶于水后濃度的計算、加熱的成分、氨水與液氨) NH3+HCl=NH4Cl(白煙,檢驗氨氣)4NH3+5O2===4NO+6H2O 4、實驗室制法(重點實驗)2NH4Cl+Ca(OH)2=2NH3↑+CaCl2+2H2O(該反應不能改為離子方程式?) 發生裝置:固+固(加熱)→氣,同制O2收集:向下排空氣法(不能用排水法) 檢驗:用濕潤的紅色石蕊試紙靠近容器口(試紙變藍)或將蘸有濃鹽酸的玻璃棒接近容器口(產生白煙) 干燥:堿石灰(裝在干燥管里)[不能用濃硫酸、無水氯化鈣、P2O5等干燥劑] 注意事項:試管口塞一團棉花(防止空氣對流,影響氨的純度)或塞一團用稀硫酸浸濕的棉花(吸收多余氨氣,防止污染大氣) 氨氣的其他制法:加熱濃氨水,濃氨水與燒堿(或CaO)固體混合等方法 5、銨鹽白色晶體,易溶于水,受熱分解,與堿反應放出氨氣(加熱)。 NH4Cl=NH3↑+HCl↑(NH3+HCl=NH4Cl)NH4HCO3=NH3↑+H2O↑+CO2↑ 1 Na+的焰色+的焰色 黃色紫色(隔藍色鈷玻璃觀察) 2 鈉與水反應的現象 鈉漂浮在水面上,熔化成一個銀白色小球,在水面到處游動,發出咝咝的聲響,反應后滴入酚酞溶液變紅。 3 能與Na2O2反應的兩種物質 H2O、CO2 4 治療胃酸過多的藥品 NaHCO3 5 堿金屬單質與鹽溶液反應 (無法置換金屬) 2Na + 2H2O + CuSO4 === Na2SO4 + Cu(OH)2↓+ H2↑ 6 碳酸鈉、碳酸氫鈉的.熱穩定性比較 碳酸氫鈉受熱易分解 7 碳酸鈉、碳酸氫鈉的相互轉化 NaHCO3加熱生成Na2CO3Na2CO3溶液中通入過量 CO2生成NaHCO3 原電池正、 負極的判斷方法: (1)由組成原電池的兩極材料判斷 一般是活潑的金屬為負極,活潑性較弱的金屬或能導電的非金屬為正極。 (2)根據電流方向或電子流動方向判斷。 電流由正極流向負極;電子由負極流向正極。 (3)根據原電池里電解質溶液內離子的流動方向判斷 在原電池的電解質溶液內,陽離子移向正極,陰離子移向負極。 (4)根據原電池兩極發生的變化來判斷 原電池的負極失電子發生氧化反應,其正極得電子發生還原反應。 (5)根據電極質量增重或減少來判斷。 工作后,電極質量增加,說明溶液中的陽離子在電極(正極)放電,電極活動性弱;反之,電極質量減小,說明電極金屬溶解,電極為負極,活動性強。 (6)根據有無氣泡冒出判斷 電極上有氣泡冒出,是因為發生了析出H2的電極反應,說明電極為正極,活動性弱。 本節知識樹 原電池中發生了氧化還原反應,把化學能轉化成了電能。 一次電池 (1)普通鋅錳電池 鋅錳電池是最早使用的干電池。鋅錳電池的電極分別是鋅(負極)和碳棒(正極),內部填充的是糊狀的MnO2和NH4Cl。 (2)堿性鋅錳電池 用KOH電解質溶液代替NH4Cl作電解質時,無論是電解質還是結構上都有較大變化,電池的比能量和放電電流都能得到顯著的'提高。它的電極反應如下: (3)銀鋅電池——紐扣電池 該電池使用壽命較長,廣泛用于電子表和電子計算機。其電極分別為Ag2O和Zn,電解質為KOH溶液。其電極反應式為: (4)高能電池——鋰電池 該電池是20世紀70年代研制出的一種高能電池。由于鋰的相對原子質量很小,所以比容量(單位質量電極材料所能轉換的電量)特別大,使用壽命長。 1、原電池的工作原理 (1)原電池概念: 化學能轉化為電能的裝置, 叫做原電池。 若化學反應的過程中有電子轉移,我們就可以把這個過程中的電子轉移設計成定向的移動,即形成電流。只有氧化還原反應中的能量變化才能被轉化成電能;非氧化還原反應的能量變化不能設計成電池的形式被人類利用,但可以以光能、 熱能等其他形式的能量被人類應用。 (2)原電池裝置的構成 ①有兩種活動性不同的金屬(或一種是非金屬導體)作電極。 ②電極材料均插入電解質溶液中。 ③兩極相連形成閉合電路。 (3)原電池的工作原理 原電池是將一個能自發進行的氧化還原反應的氧化反應和還原反應分別在原電池的負極和正極上發生,從而在外電路中產生電流。負極發生氧化反應,正極發生還原反應,簡易記法:負失氧,正得還。 2、原電池原理的應用 (1)依據原電池原理比較金屬活動性強弱 ①電子由負極流向正極,由活潑金屬流向不活潑金屬,而電流方向是由正極流向負極,二者是相反的。 ②在原電池中,活潑金屬作負極,發生氧化反應;不活潑金屬作正極,發生還原反應。 ③原電池的正極通常有氣體生成,或質量增加;負極通常不斷溶解,質量減少。 (2)原電池中離子移動的方向 ①構成原電池后,原電池溶液中的陽離子向原電池的正極移動,溶液中的陰離子向原電池的負極移動; ②原電池的外電路電子從負極流向正極,電流從正極流向負極。 一、構成原電池的條件構成原電池的條件有: (1)電極材料。兩種金屬活動性不同的金屬或金屬和其它導電性(非金屬或某些氧化物等);(2)兩電極必須浸沒在電解質溶液中; (3)兩電極之間要用導線連接,形成閉合回路。說明: ①一般來說,能與電解質溶液中的某種成分發生氧化反應的是原電池的負極。②很活潑的金屬單質一般不作做原電池的負極,如、Na、Ca等。 二、原電池正負極的判斷 (1)由組成原電池的兩極材料判斷:一般來說,較活潑的或能和電解質溶液反應的金屬為負極,較不活潑的金屬或能導電的非金屬為正極。但具體情況還要看電解質溶液,如鎂、鋁電極在稀硫酸在中構成原電池,鎂為負極,鋁為正極;但鎂、鋁電極在氫氧化鈉溶液中形成原電池時,由于是鋁和氫氧化鈉溶液發生反應,失去電子,因此鋁為負極,鎂為正極。 (2)根據外電路電流的方向或電子的流向判斷:在原電池的外電路,電流由正極流向負極,電子由負極流向正極。 (3)根據內電路離子的移動方向判斷:在原電池電解質溶液中,陽離子移向正極,陰離子移向負極。 (4)根據原電池兩極發生的化學反應判斷:原電池中,負極總是發生氧化反應,正極總是發生還原反應。因此可以根據總化學方程式中化合價的升降來判斷。 (5)根據電極質量的變化判斷:原電池工作后,若某一極質量增加,說明溶液中的陽離子在該電極得電子,該電極為正極,活潑性較弱;如果某一電極質量減輕,說明該電極溶解,電極為負極,活潑性較強。 (6)根據電極上產生的氣體判斷:原電池工作后,如果一電極上產生氣體,通常是因為該電極發生了析出氫的反應,說明該電極為正極,活動性較弱。 (7)根據某電極附近pH的變化判斷析氫或吸氧的電極反應發生后,均能使該電極附近電解質溶液的pH增大,因而原電池工作后,該電極附近的pH增大了,說明該電極為正極,金屬活動性較弱。 三、電極反應式的書寫 (1)準確判斷原電池的正負極是書寫電極反應的關鍵 (2)如果原電池的正負極判斷失誤,電極反應式的書寫一定錯誤。上述判斷正負極的方法是一般方法,但不是絕對的,例如銅片和鋁片同時插入濃硝酸溶液中, (3)要考慮電子的轉移數目 在同一個原電池中,負極失去電子數必然等于正極得到的電子數,所以在書寫電極反應時,一定要考慮電荷守恒。防止由總反應方程式改寫成電極反應式時所帶來的失誤,同時也可避免在有關計算中產生誤差。 (4)要利用總的反應方程式 從理論上講,任何一個自發的氧化還原反應均可設計成原電池,而兩個電極反應相加即得總反應方程式。所以只要知道總反應方程式和其中一個電極反應,便可以寫出另一個電極反應方程式。 四、原電池原理的應用 原電池原理在工農業生產、日常生活、科學研究中具有廣泛的`應用。 化學電源:人們利用原電池原理,將化學能直接轉化為電能,制作了多種電池。如干電池、蓄電池、充電電池以及高能燃料電池,以滿足不同的需要。在現代生活、生產和科學研究以及科學技術的發展中,電池發揮的作用不可代替,大到宇宙火箭、人造衛星、飛機、輪船,小到電腦、電話、手機以及心臟起搏器等,都離不開各種各樣的電池。 加快反應速率:如實驗室用鋅和稀硫酸反應制取氫氣,用純鋅生成氫氣的速率較慢,而用粗鋅可大大加快化學反應速率,這是因為在粗鋅中含有雜質,雜質和鋅形成了無數個微小的原電池,加快了反應速率。 比較金屬的活動性強弱:一般來說,負極比正極活潑。 防止金屬的腐蝕:金屬的腐蝕指的是金屬或合金與周圍接觸到的氣體或液體發生化學反應,使金屬失去電子變為陽離子而消耗的過程。在金屬腐蝕中,我們把不純的金屬與電解質溶液接觸時形成的原電池反應而引起的腐蝕稱為電化學腐蝕,電化學腐蝕又分為吸氧腐蝕和析氫腐蝕:在潮濕的空氣中,鋼鐵表面吸附一層薄薄的水膜,里面溶解了少量的氧氣、二氧化碳,含有少量的H+和OH-形成電解質溶液,它跟鋼鐵里的鐵和少量的碳形成了無數個微小的原電池,鐵作負極,碳作正極,發生吸氧腐蝕: 電化學腐蝕是造成鋼鐵腐蝕的主要原因。因此可以用更活潑的金屬與被保護的金屬相連接,或者讓金屬與電源的負極相連接均可防止金屬的腐蝕。 鐵:鐵粉是黑色的;一整塊的固體鐵是銀白色的'。Fe2+——淺綠色Fe3O4——黑色晶體 Fe(OH)2——白色沉淀Fe3+——黃色Fe(OH)3——紅褐色沉淀Fe(SCN)3——血紅色溶液 FeO——黑色的粉末Fe(NH4)2(SO4)2——淡藍綠色Fe2O3——紅棕色粉末FeS——黑色固體 銅:單質是紫紅色Cu2+——藍色CuO——黑色Cu2O——紅色CuSO4(無水)—白色CuSO4·5H2O——藍色Cu2(OH)2CO3—綠色Cu(OH)2——藍色[Cu(NH3)4]SO4——深藍色溶液 BaSO4、BaCO3、Ag2CO3、CaCO3、AgCl、Mg(OH)2、三溴苯酚均是白色沉淀 Al(OH)3白色絮狀沉淀H4SiO4(原硅酸)白色膠狀沉淀 Cl2、氯水——黃綠色F2——淡黃綠色氣體Br2——深紅棕色液體I2——紫黑色固體 HF、HCl、HBr、HI均為無色氣體,在空氣中均形成白霧 CCl4——無色的液體,密度大于水,與水不互溶KMnO4————紫色MnO4———紫色 Na2O2—淡黃色固體Ag3PO4—黃色沉淀S—黃色固體AgBr—淺黃色沉淀 AgI—黃色沉淀O3—淡藍色氣體SO2—無色,有剌激性氣味、有毒的氣體 SO3—無色固體(沸點44。80C)品紅溶液——紅色氫氟酸:HF——腐蝕玻璃 N2O4、NO——無色氣體NO2——紅棕色氣體NH3——無色、有剌激性氣味氣體 1、電解的原理 (1)電解的概念: 在直流電作用下,電解質在兩上電極上分別發生氧化反應和還原反應的過程叫做電解。電能轉化為化學能的裝置叫做電解池。 (2)電極反應:以電解熔融的NaCl為例: 陽極:與電源正極相連的電極稱為陽極,陽極發生氧化反應:2Cl-→Cl2↑+2e-。 陰極:與電源負極相連的`電極稱為陰極,陰極發生還原反應:Na++e-→Na。 總方程式:2NaCl(熔)2Na+Cl2↑ 2、電解原理的應用 (1)電解食鹽水制備燒堿、氯氣和氫氣。 陽極:2Cl-→Cl2+2e- 陰極:2H++e-→H2↑ 總反應:2NaCl+2H2O2NaOH+H2↑+Cl2↑ (2)銅的電解精煉。 粗銅(含Zn、Ni、Fe、Ag、Au、Pt)為陽極,精銅為陰極,CuSO4溶液為電解質溶液。 陽極反應:Cu→Cu2++2e-,還發生幾個副反應 Zn→Zn2++2e-;Ni→Ni2++2e- Fe→Fe2++2e- Au、Ag、Pt等不反應,沉積在電解池底部形成陽極泥。 陰極反應:Cu2++2e-→Cu (3)電鍍:以鐵表面鍍銅為例 待鍍金屬Fe為陰極,鍍層金屬Cu為陽極,CuSO4溶液為電解質溶液。 陽極反應:Cu→Cu2++2e- 陰極反應:Cu2++2e-→Cu 1 常用作金屬焊接保護氣、代替稀有氣體填充燈泡、保存糧食水果的氣體 N2 2 在放電情況下才發生反應的兩種氣體 N2與O2 3 遇到空氣立刻變紅棕色的'氣體 NO 4 有顏色的氣體 Cl2(黃綠色)、NO2(紅棕色)、 5 造成光化學煙霧的污染物 NO2 6 極易溶于水的氣體 NH3、HCl 7 NH3噴泉實驗的現象和原理 紅色噴泉 8 NH3的空間結構 三角錐形 9 溶于水顯堿性的氣體 NH3 10 能使濕潤的紅色石蕊試紙變藍的氣體 NH3 1常用來制葡萄糖的是淀粉 2能發生皂化反應的是油脂 3水解生成氨基酸的是蛋白質 4水解的最終產物是葡萄糖的是淀粉、纖維素、麥芽糖 5能與Na2CO3或NaHCO3溶液反應的.是乙酸 6有毒的物質是甲醇(含在工業酒精中);NaNO2(亞硝酸鈉,工業用鹽) 7能與Na反應產生H2的是含羥基的物質(如乙醇、苯酚) 8能發生水解的是酯、油脂、二糖、多糖、蛋白質 9能還原成醇的是醛 10能作植物生長調節劑、水果催熟劑的是乙烯 氧族元素 1、能使帶火星的木條復燃的氣體O2 2、能使品紅褪色的氣體SO2(顏色可復現)、Cl2(顏色不可復現) 3、能使澄清的石灰水變渾濁的氣體CO2、SO2 4、濃硫酸的`特性吸水性、脫水性、氧化性、難揮發 5、檢查腸胃用作“鋇餐”的BaSO4 6、檢驗SO先加稀鹽酸酸化,再加入BaCl2溶液,有白色沉淀 7、某溶液加入鹽酸產生刺激氣味氣體,該溶液中定含有: 8、引發酸雨的污染物SO2 一、化學反應的速率 1、化學反應是怎樣進行的 (1)基元反應:能夠一步完成的反應稱為基元反應,大多數化學反應都是分幾步完成的。 (2)反應歷程:平時寫的化學方程式是由幾個基元反應組成的總反應。總反應中用基元反應構成的反應序列稱為反應歷程,又稱反應機理。 (3)不同反應的反應歷程不同。同一反應在不同條件下的反應歷程也可能不同,反應歷程的差別又造成了反應速率的不同。 2、化學反應速率 (1)概念: 單位時間內反應物的減小量或生成物的增加量可以表示反應的快慢,即反應的速率,用符號v表示。 (2)表達式: (3)特點 對某一具體反應,用不同物質表示化學反應速率時所得的數值可能不同,但各物質表示的化學反應速率之比等于化學方程式中各物質的系數之比。 3、濃度對反應速率的影響 (1)反應速率常數(K) 反應速率常數(K)表示單位濃度下的化學反應速率,通常,反應速率常數越大,反應進行得越快。反應速率常數與濃度無關,受溫度、催化劑、固體表面性質等因素的影響。 (2)濃度對反應速率的影響 增大反應物濃度,正反應速率增大,減小反應物濃度,正反應速率減小。 增大生成物濃度,逆反應速率增大,減小生成物濃度,逆反應速率減小。 (3)壓強對反應速率的影響 壓強只影響氣體,對只涉及固體、液體的反應,壓強的改變對反應速率幾乎無影響。 壓強對反應速率的影響,實際上是濃度對反應速率的影響,因為壓強的改變是通過改變容器容積引起的。壓縮容器容積,氣體壓強增大,氣體物質的濃度都增大,正、逆反應速率都增加;增大容器容積,氣體壓強減小;氣體物質的濃度都減小,正、逆反應速率都減小。 4、溫度對化學反應速率的影響 (1)經驗公式 阿倫尼烏斯總結出了反應速率常數與溫度之間關系的經驗公式: 式中A為比例系數,e為自然對數的`底,R為摩爾氣體常數量,Ea為活化能。 由公式知,當Ea>0時,升高溫度,反應速率常數增大,化學反應速率也隨之增大。可知,溫度對化學反應速率的影響與活化能有關。 (2)活化能Ea。 活化能Ea是活化分子的平均能量與反應物分子平均能量之差。不同反應的活化能不同,有的相差很大。活化能Ea值越大,改變溫度對反應速率的影響越大。 5、催化劑對化學反應速率的影響 (1)催化劑對化學反應速率影響的規律: 催化劑大多能加快反應速率,原因是催化劑能通過參加反應,改變反應歷程,降低反應的活化能來有效提高反應速率。 (2)催化劑的特點: 催化劑能加快反應速率而在反應前后本身的質量和化學性質不變。 催化劑具有選擇性。 催化劑不能改變化學反應的平衡常數,不引起化學平衡的移動,不能改變平衡轉化率。 二、化學反應條件的優化——工業合成氨 1、合成氨反應的限度 合成氨反應是一個放熱反應,同時也是氣體物質的量減小的熵減反應,故降低溫度、增大壓強將有利于化學平衡向生成氨的方向移動。 2、合成氨反應的速率 (1)高壓既有利于平衡向生成氨的方向移動,又使反應速率加快,但高壓對設備的要求也高,故壓強不能特別大。 (2)反應過程中將氨從混合氣中分離出去,能保持較高的反應速率。 (3)溫度越高,反應速率進行得越快,但溫度過高,平衡向氨分解的方向移動,不利于氨的合成。 (4)加入催化劑能大幅度加快反應速率。 3、合成氨的適宜條件 在合成氨生產中,達到高轉化率與高反應速率所需要的條件有時是矛盾的,故應該尋找以較高反應速率并獲得適當平衡轉化率的反應條件:一般用鐵做催化劑,控制反應溫度在700K左右,壓強范圍大致在1×107Pa~1×108Pa之間,并采用N2與H2分壓為1∶2、8的投料比。 (一)沉淀溶解平衡 1、沉淀溶解平衡和溶度積定義: 在一定溫度下,當把PbI2固體放入水中時,PbI2在水中的溶解度很小,PbI2表面上的Pb2+離子和I-離子,在H2O分子作用下,會脫離晶體表面進入水中。反過來在水中的水合Pb2+離子與水合I-離子不斷地作無規則運動,其中一些Pb2+(aq)和I-(aq)在運動中相互碰撞,又可能沉積在固體表面。當溶解速率與沉淀速率相等時,在體系中便存在固體與溶液中離子之間的動態平衡。這種平衡關系稱為沉淀溶解平衡,其平衡常數叫溶度積常數或溶度積。沉淀溶解平衡和化學平衡、電離平衡一樣,一種動態平衡,其基本特征為:(1)可逆過程;(2)沉積和溶解速率相等;(3)各離子濃度不變;(4)改變溫度、濃度等條件平衡移動。 2、溶度積的一般表達式: 在一定溫度下,難溶電解質在飽和溶液中各離子濃度冪的乘積是一個常數,這個常數稱為該難溶電解質的溶度積。用符號sp表示。 3、溶度積的影響因素: 溶度積sp的大小和溶質的溶解度不同,它只與難溶電解質的性質和溫度有關,與濃度無關。但是,當溫度變化不大時,sp數值的改變不大,因此,在實際工作中,常用室溫18~25℃的常數。 4、溶度積的應用: (1)溶度積sp可以用來判斷難溶電解質在水中的溶解能力,當化學式所表示的組成中陰、陽離子個數比相同時,sp數值越大的難溶電解質在水中的溶解能力越強。 (2)溶度積sp可以判斷沉淀的生成、溶解情況以及沉淀溶解平衡移動方向。 5、溶度積(sp)的影響因素和性質: 溶度積(sp)的大小只與難溶電解質性質和溫度有關,與沉淀的量無關,離子濃度的改變可使平衡發生移動,但不能改變溶度積,不同的難溶電解質在相同溫度下sp不同。 相同類型的難溶電解質的sp越小,溶解度越小,越難溶。例如: sp(AgCl) >sp(AgBr) > sp(AgI),溶解度:AgCl) > sp(AgBr) > sp(AgI)。 6、溶度積規則: 在一給定的難溶電解質溶液中,濃度商(Qc)和溶度積(sp)之間存在三種可能情況。 (1)Qc=sp此時難溶電解質達到沉淀溶解平衡狀態,溶液是飽和溶液。 (2)Qc>sp溶液中將析出沉淀,直到溶液中的Qc=sp為止。 (3)Qc 說明: 濃度商(Qc)是非平衡狀態下各離子濃度冪的乘積,所以Qc值不固定。 (二)沉淀溶解平衡的應用 沉淀溶解平衡和化學平衡、電離平衡一樣合乎平衡的基本特征、滿足平衡的變化基本規律,可以運用平衡移動原理來進行解釋。根據平衡移動原理和溶度積規則可知,改變溶液中離子濃度,可以使沉淀溶解平衡發生移動,實現沉淀的溶解、生成和沉淀的轉化。 1、沉淀的溶解與生成: 沉淀的溶解與生成這兩個相反的過程它們相互轉化的條件是離子濃度的大小,控制離子濃度的大小,可以使反應向所需要的'方向轉化。 (1)在難溶電解質溶液中,沉淀溶解的唯一條件是:Qc (2)在難溶電解質溶液中,產生沉淀的唯一條件是:Qc>sp。常用的方法:在難溶電解質的溶液中加入適當沉淀劑,設法使構晶離子的濃度增大,使之滿足Qc>sp,促進平衡向生成沉淀的方向移動,就會生成沉淀。 2、沉淀的轉化: (1)定義:使一種難溶電解質轉化為另一種難溶電解質,即把一種沉淀轉化為另一種沉淀的過程稱為沉淀的轉化。 (2)實質: 沉淀轉化的實質:沉淀溶解平衡的移動。一般來說,對相同類型的難溶電解質,溶度積大的難溶電解質容易轉化為溶度積較小的難溶電解質。一種沉淀可轉化為更難溶的沉淀,難溶物的溶解度相差越大,這種轉化的趨勢越大。 (3)方法: 沉淀的轉化常用的方法:在含有沉淀的溶液中,加入適當的沉淀劑,使其與溶液中某一離子結合成為另一種難溶電解質的過程。例如: 在ZnS(s)中加入CuSO4溶液可轉化為CuS (s)沉淀。 在FeS(s)中加入到Cu2+、Hg2+、Pb2+等重金屬的溶液可轉化為CuS (s)、HgS (s)、PbS (s)等沉淀。 1、在解計算題中常用到的恒等:原子恒等、離子恒等、電子恒等、電荷恒等、電量恒等,用到的方法有:質量守恒、差量法、歸一法、極限法、關系法、十字交法和估算法。 (非氧化還原反應:原子守恒、電荷平衡、物料平衡用得多,氧化還原反應:電子守恒用得多) 2、電子層結構相同的離子,核電荷數越多,離子半徑越小; 3、體的熔點:原子晶體>離子晶體>分子晶體中學學到的原子晶體有:Si、SiC、SiO2=和金剛石。原子晶體的熔點的比較是以原子半徑為依據的:金剛石>SiC>Si(因為原子半徑:Si>C>O). 4、分子晶體的熔、沸點:組成和結構相似的物質,分子量越大熔、沸點越高。 5、體的帶電:一般說來,金屬氫氧化物、金屬氧化物的膠體粒子帶正電,非金屬氧化物、金屬硫化物的膠體粒子帶負電。 6、氧化性:MnO4->Cl2>Br2>Fe3+>I2>S=4(+4價的`S) 例:I2+SO2+H2O=H2SO4+2HI 7、有Fe3+的溶液一般呈酸性。 8、能形成氫鍵的物質:H2O、NH3、HF、CH3CH2OH。 9、水(乙醇溶液一樣)的密度小于1,濃度越大,密度越小,硫酸的密度大于1,濃度越大,密度越大,98%的濃硫酸的密度為:1.84g/cm3。 10、子是否共存: (1)是否有沉淀生成、氣體放出; (2)是否有弱電解質生成; (3)是否發生氧化還原反應; (4)是否生成絡離子[Fe(SCN)2、Fe(SCN)3、Ag(NH3)+、[Cu(NH3)4]2+等]; (5)是否發生雙水解。 【高二化學知識點】相關文章: 高二化學知識點12-19 高二化學知識點(經典)03-04 (精選)高二化學知識點03-04 高二化學知識點歸納03-03 高二化學重點知識點12-19 必背高二化學知識點03-03 高二必背化學知識點03-04 高二化學知識點歸納大全03-04 高二化學必考知識點梳理03-04 高二化學知識點歸納最新03-07 高二化學知識點 篇4
高二化學知識點 篇5
高二化學知識點 篇6
高二化學知識點 篇7
高二化學知識點 篇8
高二化學知識點 篇9
高二化學知識點 篇10
高二化學知識點 篇11
高二化學知識點 篇12
高二化學知識點 篇13
高二化學知識點 篇14