- 相關推薦
軟件工程數據挖掘開發測試技術論文
1.軟件工程數據的挖掘測試技術
1.1代碼編寫
通過對軟件數據進行分類整理,在進行缺陷軟件的排除工作以后,根據軟件開發過程中的各種信息進行全新的代碼編寫。基于代碼編寫人員的編寫經驗,在一般情況,對結構功能與任務類似的模塊進行重新編寫,這些重新編寫的模塊應遵循特定的編寫規則,這樣才能保證代碼編寫的合理有效性。
1.2錯誤重現
代碼編寫完成以后開發者會將這些代碼進行版本的確認,然后將正確有效的代碼實際應用到適當版本的軟件中去。而對于存在缺陷的代碼,開發者需要針對代碼產生缺陷的原因進行分析,通過不但調整代碼內的輸入數據,直到代碼內的數據與程序報告中的描述接近為止。存在缺陷的代碼往往會以缺陷報告的形式對開發者予以說明,由于缺陷報告的模糊性,常常會誤導開發者,進而造成程序設計混亂。
1.3理解行為
軟件開發者在設計軟件的過程中需要明確自己設計軟件中每一個代碼的內容,同時還需要理解其他開發者編寫的代碼,這樣才能有效地完善軟件開發者的編寫技術。同時,軟件開發者在進行代碼編寫的過程中,需要對程序行為進行準確的理解,以此保證軟件內文檔和注釋的準確性。
1.4設計推究
開發者在準備對軟件進行完善設計的過程中,首先需要徹底了解軟件的總體設計,對軟件內部復雜的系統機構進行詳細研究與分析,充分把握軟件細節,這有這樣才能真正實現軟件設計的合理性與準確性。
2.軟件工程數據挖掘測試的有效措施
2.1進行軟件工程理念和方法上的創新
應通過實施需求分析,將數據挖據逐漸演變成形式化、規范化的需求工程,在軟件開發理念上,加強對數據挖掘的重視,對軟件工程的架構進行演化性設計與創新,利用新技術,在軟件開發的過程中添加敏捷變成與間件技術,由此,提高軟件編寫水平。
2.2利用人工智能
隨著我國科學技術的不斷發展與創新,機器學習已經逐漸被我國各個領域所廣泛應用,在進行軟件工程數據挖掘技術創新的過程中,可以將機器學習及數據挖掘技術實際應用于軟件工程中,以此為我國軟件研發提供更多的便捷。人工智能作為我國先進生產力的重要表現,在實際應用于軟件工程數據的挖掘工作時,應該利用機器較強的學習能力與運算能力,將數據統計及數據運算通過一些較為成熟的方法進行解決。在軟件工程數據挖掘的工作中,合理化的將人工智能實際應用于數據挖掘,以此為數據挖掘提供更多的開發測試技術。
2.3針對數據挖掘結果進行評價
通過分析我國傳統的軟件工程數據挖掘測試工作,在很多情況下,傳統的數據挖掘測試技術無法做到對發掘數據的全面評價與實際應用研究,這一問題致使相應的軟件數據在被發掘出來以后無法得到有效地利用,進而導致我國軟件開發工作受到嚴重的抑制影響。針對這一問題,數據開發者應該利用挖掘缺陷檢驗報告,針對缺陷檢驗的結果,制定相應的挖掘結構報告。同時,需要結合軟件用戶的體驗評價,對挖掘出的數據進行系統化的整理與分析,建立一整套嚴謹、客觀的服務體系,運用CodeCity軟件,讓用戶在的體驗過后可以對軟件進行評價。考慮到軟件的服務對象是人,因此,在軟件開發的過程中要將心理學與管理學應用于數據挖掘,建立數據挖掘系統和數據挖掘評價系統。
3.結束語
綜上所述,由于軟件工程數據挖掘測試技術廣闊的應用前景,我國相關部門已經加大了對軟件技術的投資與開發力度,當下,國內已經實現了軟件工程的數據挖掘、人工智能、模式識別等多種領域上的發展。
【軟件工程數據挖掘開發測試技術論文】相關文章:
數據挖掘論文04-29
網絡營銷中數據挖掘技術的應用論文11-27
數據挖掘論文[范例15篇]07-29
數據挖掘中抽樣技術的應用04-29
數據挖掘04-29
淺談數據挖掘05-02
數據挖掘技術在遼河水文預報中的研究04-30
基于數據挖掘技術的交通事故分析04-26
數據挖掘中的決策樹技術及其應用04-26
數據挖掘技術在遼河水文預報中的研究04-30