初中數學教案【合集】
作為一位杰出的老師,通常需要準備好一份教案,教案是教材及大綱與課堂教學的紐帶和橋梁。優秀的教案都具備一些什么特點呢?下面是小編為大家收集的初中數學教案,歡迎閱讀與收藏。
初中數學教案1
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展推理能力和有條理表達能力.
2.掌握直線平行的條件,領悟歸納和轉化的數學思想
學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )
2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.
五、作業課本15頁-16頁練習的1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展空
間觀念,推理能力和有條理表達能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學習重點:直線平行的'條件的應用.
學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.
一、學習過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習:
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
初中數學教案2
教學建議
一、知識結構
二、重點難點分析
本節教學的重點是同位角、內錯角、同旁內角的概念、難點為在較復雜的圖形中辨認同位角、內錯角、同旁內角、掌握同位角、內錯角、同旁內角的相關概念是進一步學習平行線、四邊形等后續知識的基礎、
(1)兩條直線被第三條直線所截,構成八個角(簡稱“三線八角”),其中同位角4對,內錯角2對,同旁內角2對、
(2)準確識別同位角、內錯角、同旁內角的關鍵,是弄清哪兩條直線被哪一條線所截、也就是說,在辨別這些角之前,要弄清哪一條直線是截線,哪兩條直線是被截線、
(3)在截線的同旁找同位角和同旁內角,在截線的兩旁找內錯角、要結合圖形,熟記同位角、內錯角、同旁內角的位置特點,比較它們的區別與聯系、
(4)在復雜的圖形中識別同位角、內錯角、同旁內角時,應當沿著角的邊將圖形補全,或者把多余的線暫時略去,找到三線八角的基本圖形,進而確定這兩個角的位置關系、
三、教法建議
1、上節課討論了兩條直線相交以后所形成的四個角,這一節課是進一步討論三條直線相交后所形成的八個角,所以在教課過程,要運用基本圖形結構將所學的知識及其內在聯系向學生展示、
2、在講三線八角概念時,一定要細致地分析、顧名思義,把握住兩個關鍵的環節,“三條線與一條線”,盡量給出變式的圖形,讓學生分辨清楚、
3、這節課雖然不涉及兩條直線平行后被第三條直線所截的問題,但在可能的情況下,將平行線的圖形讓學生見到,對下一步的學習很有好處,例如,平行四形中的內錯角,學生開始接受起來有一定困難,在這一課時中,出現這個基本圖形,為以后學習打下基礎、
教學設計示例
一、素質教育目標
(一)知識教學點
1、理解同位角、內錯角、同旁內角的概念、
2、結合圖形識別同位角、內錯角、同旁內角、
(二)能力訓練點
1、通過變式圖形的識圖訓練,培養學生的識圖能力、
2、通過例題口答“為什么”,培養學生的推理能力、
(三)德育滲透點
從復雜圖形分解為基本圖形的過程中,滲透化繁為簡,化難為易的化歸思想;從圖形變化過程中,培養學生辯證唯物主義觀點、
(四)美育滲透點
通過“三線八角”基本圖形,使學生認識幾何圖形的位置美、
二、學法引導
1、教師教法:嘗試指導,討論評價、變式練習、回授、
2、學生學法:主動思考,相互研討,自我歸納、
三、重點、難點、疑點及解決辦法
(一)生點
同位角、內錯角、同旁內角的概念、
(二)難點
在較復雜的圖形中辨認同位角、內錯角、同旁內角、
(三)疑點
正確理解新概念、
(四)解決辦法
引導學生討論歸納三類角的特征,并以練習加以鞏固、
四、課時安排
1課時
一、教具學具準備
投影儀、三角板、自制膠片、
六、師生互動活動設計
1、通過一組練習創設情境,復習基礎知識,引入新課、
2、通過學生閱讀書本,教師設問引導,練習鞏固講授新課、
3、通過師生互答完成課堂小結、
七、教學步驟
(一)明確目標
使學生掌握“三線八角”,并能在圖形中進行辨識、
(二)整體感知
以復習舊知創設情境引入課題,以指導閱讀、設計問題、小組討論學習新知,以變式練習鞏固新知、
(三)教學過程
創設情境,復習導入
回答下列問題:
1、如圖,∠1與∠3,∠2與∠4是什么角?它們的大小有什么關系?
2、如圖,∠1與∠2,∠l與∠4是什么角?它們有什么關系?
3、如圖,三條直線 AB 、CD 、EF 交于一點 O ,則圖中有幾對對頂角,有幾對鄰補角?
4、如圖,三條直線 AB 、CD 、EF 兩兩相交,則圖中有幾對對項角,有幾對鄰補角?
5、三條直線相交除上述兩種情況外,還有其他相交的情形嗎?
學生答后,教師出示復合投影片1,在(1、2題的)圖上添加一條直線 CD ,使 CD 與EF相交于某一點(如圖),直線 AB 、CD 都與EF相交或者說兩條直線 AB 、CD 被第三條直線EF所截,這樣圖中就構成八個角,在這八個角中,有公共頂點的兩個角的關系前面已經學過,今天,我們來研究那些沒有公共頂點的兩個角的關系、
【板書】 2.3同位角、內錯角、同旁內角
【教法說明】通過復合投影片演示了同位角、內錯角、同旁內角的產生過程,并從演示過程中看到,這些角也是與相交線有關系的.角,兩條直線被第三條直線所截,是相交線的又一種情況、認識事物間是發展變化的辯證關系、
嘗試指導,學習新知
1、學生自己嘗試學習,閱讀課本第67頁例題前的內容、
2、設計以下問題,幫助學生正確理解概念、
(1)同位角:∠4和∠8與截線及兩條被截直線在位置上有什么特點?圖中還有其他同位角嗎?
(2)內錯角:∠3和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他內錯角嗎?
(3)同旁內角:∠4和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他同分內角嗎?
(4)同位角和同分內角在位置上有什么相同點和不同點?
內錯角和同旁內角在位置上有什么相同點和不同點?
(5)這三類角的共同特征是什么?
3、對上述問題以小組為單位展開討論,然后學生間互相評議、
4、教師對學生討論過程中所發表的意見進行評判,歸納總結、
在截線的同旁找同位角和同旁內角,在截線的不同旁找內錯角,因此在“三線八角”的圖形中的主線是截線,抓住了截線,再利用圖形結構特征( F 、Z 、U )判斷問題就迎刃而解、
【教法說明】讓學生自己嘗試學習,可以充分發揮學生的積極性、主動性和創造性,幾個問題的設計目的是深化教學重點,使學生看書更具有針對性,避免盲目性、學生互相評價可以增加討論的深度,教師最后評價可以統一學生的觀點,學生在議議評評的過程中明理、增智,培養了能力、
投影顯示(投影片2)
例題?如圖,直線DE、BC被直線AB所截,(1)∠l與∠2,∠1與∠3,∠1與∠4各是什么關系的角?
(2)如果∠1=∠4,那么∠1和∠2相等嗎?∠1和∠3互補嗎?為什么?
[教法說明]例題較簡單,讓學生口答,回答“為什么”只要求學生能用文字語言把主要根據說出來,講明道理即可,不必太規范,等學習證明時再嚴格訓練、
變式訓練,鞏固新知
投影顯示(投影片3)
【教法說明】本題是對簡單變式圖形的訓練,以培養學生的識圖能力,第2題指明第三條直線是 c ,即 a 和 b 被 c 所截,如 c 和 a 被占所截,則結果截然不同,因此遇到題目先分清哪兩條直線被哪一條直線所栽,這是解題的關鍵和前提、
投影顯示(投影片4)
【教法說明】本組練習是由同位角、內錯角和同旁內角找出構成它們的“三線”,或是由“三線八角”圖形判斷同位角、內錯角、同旁內角、這兩者都需要進行這樣的三個步驟,一看角的頂點;二看角的邊;三看角的方位、這“三看”又離不開主線——截線的確定,讓學生知道:無論圖形的位置怎樣變動,圖形多么復雜,都要以截線為主線(不變),去解決萬變的圖形,另外遇到較復雜的圖形,也可以從分解圖形入手,把復雜圖形化為若干個基本圖形、如第2題由已知條件結合所求部分,對各個小題分別分解圖形如下:
投影顯示(投影片5)
【教法說明】學生在較復雜的圖形中,對找這一類的同位角,找這一類的內錯角,找這一類的同旁內角有一定困難,為此安排本組選擇題,有利于突破難點,第2題中學生對 C 、D 兩個圖形易混淆,要加強對比以便解決教學疑點。第3題讓學生掌握三角形中的3對同旁內角。另外本組練習也為后面的練習打基礎。
投影顯示(投影片6)
【教法說明】本組題目是上組題的延伸,再次突破難點,提高學生思維的廣度與深度、學生解決此類題常常因考慮不全面而丟解,要使學生養成全方位多角度考慮問題的習慣,第2題以裁線為標準分類求解,分別把 AB 、BD 、EF 看成是截線找三類角,這樣既不遺漏又不重復、
(四)總結、擴展
1、本節研究了一條直線分別和兩條直線相交,所得八個角的位置關系,掌握辨別這些角位置關系的關鍵是分清哪條線是截線,哪些線是被截直線,在截線的同旁找同位角和同旁內角,在截線的不同旁找內錯角,只要抓住三線中的主線——截線,就能正確識別這三類角、
2、相交直線
3、教師指著圖中的一條被截直線,問:“這條直線繞著與截線著與截線的交點旋轉,當同位角相等時,兩條被截直線是什么關系?”
【教法說明】將所學知識進行歸納總結,加強了知識問的聯系,充分體現了所學知識的系統性,最后用是合式小結、可使學生課后自覺地去看預習,尋找答案。系統性,最后用懸念式小結,可使學生課后自覺地去看書預習,尋找答案。
八、布置作業
課本第72頁B組第4題、
【教法說明】課本練習穿插在課堂練習中完成,故只留一道提高題,讓學有余力的同學繼續探究,提高學生思維廣度
作業答案
4、答:(1)設 E 是 BC 延長線上的一點,∠ A 與∠ ACD 、∠ ACE 是內錯角,它們分別是由直線 AB 、CD 被直線 AC 截成的和直線 AB 、BE 被直線 AC 截成的。
(2)∠ B 與∠ DCE 、∠ ACE 是同位有,它們分別是由直線 AB 、CD 被直線 BE 截成的和直線 AB 、AC 被直線 BE 截成的。
初中數學教案3
教學目的
1、使學生了解無理數和實數的概念,掌握實數的分類,會準確判斷一個數是有理數還是無理數。
2、使學生能了解實數絕對值的意義。
3、使學生能了解數軸上的點具有一一對應關系。
4、由實數的分類,滲透數學分類的思想。
5、由實數與數軸的一一對應,滲透數形結合的思想。
教學分析
重點:無理數及實數的概念。
難點:有理數與無理數的區別,點與數的一一對應。
教學過程
一、復習
1、什么叫有理數?
2、有理數可以如何分類?
(按定義分與按大小分。)
二、新授
1、無理數定義:無限不循環小數叫做無理數。
判斷:無限小數都是無理數;無理數都是無限小數;帶根號的.數都是無理數。
2、實數的定義:有理數與無理數統稱為實數。
3、按課本中列表,將各數間的聯系介紹一下。
除了按定義還能按大小寫出列表。
4、實數的相反數:
5、實數的絕對值:
6、實數的運算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
(1)任何實數的偶次冪是正實數。( )
(2)在實數范圍內,若| x|=|y|則x=y。( )
(3)0是最小的實數。( )
(4)0是絕對值最小的實數。( )
解:略
三、練習
P148 練習:3、4、5、6。
四、小結
1、今天我們學習了實數,請同學們首先要清楚,實數是如何定義的,它與有理數是怎樣的關系,二是對實數兩種不同的分類要清楚。
2、要對應有理數的相反數與絕對值定義及運算律和運算性質,來理解在實數中的運用。
五、作業
1、P150 習題A:3。
2、基礎訓練:同步練習1。
初中數學教案4
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:
探索和掌握平行公理及其推論.
學習難點:
對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
(二)平行公理及推論
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
(一)選擇題:
1、下列推理正確的.是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初中數學教案5
[教學目標]
1、體會并了解反比例函數的圖象的意義
2、能列表、描點、連線法畫出反比例函數的圖象
3、通過反比例函數的圖象的分析,探索并掌握反比例函數的圖象的性質
[教學重點和難點]
本節教學的重點是反比例函數的圖象及圖象的性質
由于反比例函數的圖象分兩支,給畫圖帶來了復雜性是本節教學的難點
[教學過程]
1、情境創設
可以從復習一次函數的圖象開始:你還記得一次函數的圖象嗎?在回憶與交流中,進一步認識函數圖象的直觀有助于理解函數的性質。轉而導人關注新的函數——反比例函數的圖象研究:反比例函數的圖象又會是什么樣子呢?
2、探索活動
探索活動1反比例函數y?
由于反比例函數y?
要分幾個層次來探求:
(1)可以先估計——例如:位置(圖象所在象限、圖象與坐標軸的交點等)、趨勢(上升、下降等);
(2)方法與步驟——利用描點作圖;
列表:取自變量x的'哪些值?——x是不為零的任何實數,所以不能取x的值的為零,但仍可以以零為基準,左右均勻,對稱地取值。
描點:依據什么(數據、方法)找點?
連線:怎樣連線?——可在各個象限內按照自變量從小到大的順序用兩條光滑的曲線把所描的點連接起來。
探索活動2反比例函數y??2的圖象。x2的圖象是曲線型的,且分成兩支。對此,學生第一次接觸有一定的難度,因此需x2的圖象。x
可以引導學生采用多種方式進行自主探索活動:
2的圖象的方式與步驟進行自主探索其圖象;x
222(2)可以通過探索函數y?與y??之間的關系,畫出y??的圖象。__
22探索活動3反比例函數y??與y?的圖象有什么共同特征?__(1)可以用畫反比例函數y?
引導學生從通過與一次函數的圖象的對比感受反比例函數圖象“曲線”及“兩支”的特征。(即雙曲線)反比例函數y?
k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當k?0時,圖象在第一、第x
初中數學教案6
教學目標
使學生進一步理解立方根的概念,并能熟練地進行求一個數的立方根的運算;
能用有理數估計一個無理數的大致范圍,使學生形成估算的意識,培養學生的估算能力;
經歷運用計算器探求數學規律的過程,發展合情推理能力。
教學難點
用有理數估計一個無理的大致范圍。
知識重點
用有理數估計一個無理的大致范圍。
對于計算器的使用,在教學中采用學生自己閱讀計算器的說明書、自己操作練習來掌握用計算器進行開立方運算的方法,并讓學生互相交流,讓學生親身體會到利用計算器不僅能給運算帶來很大的方便,也給探求數量間的關系與變化帶來方便。在教學過程中,教師要關注學生能否通過閱讀,掌握用計算器進行開立方運算的簡單操作;能否利用計算器探究數量間的關系,從而尋找出數量的變化關系。
使用計算器進行復雜運算,可以使學生學習的重點更好地集中到理解數學的本質上來,而估算也是一種具有實際應用價值的運算能力,在本節課的課堂教學中綜合運用筆算、計算器和估算等培養學生的運算能力。知識點一:多邊形的概念
⑴多邊形定義:在平面內,由一些線段首位順次相接組成的圖形叫做________、
如果一個多邊形由n條線段組成,那么這個多邊形叫做____________。(一個多邊形由幾條線段組成,就叫做幾邊形、)
多邊形的表示:用表示它的各頂點的大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序。如五邊形ABCDE。
⑵多邊形的邊、頂點、內角和外角、
多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的'鄰邊的延長線組成的角叫做________________、
⑶多邊形的對角線
連接多邊形的不相鄰的兩個頂點的線段,叫做___________________、畫一個五邊形ABCDE,并畫出所有的對角線。知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是______多邊形、
知識點二:正多邊形
各個角都相等,各條邊都相等的多邊形叫做_____________、
探究多邊形的對角線條數
知識點三:多邊形的內角和公式推導
1、我們知道三角形的內角和為__________、
2、我們還知道,正方形的四個角都等于____°,那么它的內角和為_____°,同樣長方形的內角和也是______°、
3、正方形和長方形都是特殊的四邊形,其內角和為360度,那么一般的四邊形的內角和為多少呢?
4、畫一個任意的四邊形,用量角器量出它的四個內角,計算它們的和,與同伴交流你的結果、從中你得到什么結論?
探究1:任意畫一個四邊形,量出它的4個內角,計算它們的和、再畫幾個四邊形,?量一量、算一算、你能得出什么結論?能否利用三角形內角和等于180?°得出這個結論?結論:。
探究2:從上面的問題,你能想出五邊形和六邊形的內角和各是多少嗎?觀察圖3,?請填空:
(1)從五邊形的一個頂點出發,可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內角和等于180°×______、
(2)從六邊形的一個頂點出發,可以引_____條對角線,它們將六邊形分為_____個三角形,六邊形的內角和等于180°×______、探究3:一般地,怎樣求n邊形的內角和呢?請填空:
從n邊形的一個頂點出發,可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內角和等于180°×______、
綜上所述,你能得到多邊形內角和公式嗎?設多邊形的邊數為n,則
n邊形的內角和等于______________、
想一想:要得到多邊形的內角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形、除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內角和公式嗎?
知識點四:多邊形的外角和
探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和、六邊形的外角和等于多少?
問題:如果將六邊形換為n邊形(n是大于等于3的整數),結果還相同嗎?多邊形的外角和定理:。理解與運用
例1如果一個四邊形的一組對角互補,那么另一組對角有什么關系?已知:四邊形ABCD的∠A+∠C=180°、求:∠B與∠D的關系、
自我檢測:
(一)、判斷題、
1、當多邊形邊數增加時,它的內角和也隨著增加、()
2、當多邊形邊數增加時、它的外角和也隨著增加、()
3、三角形的外角和與一多邊形的外角和相等、()
4、從n邊形一個頂點出發,可以引出(n一2)條對角線,得到(n一2)個三角形、()
5、四邊形的四個內角至少有一個角不小于直角、()
(二)、填空題、
1、一個多邊形的每一個外角都等于30°,則這個多邊形為
2、一個多邊形的每個內角都等于135°,則這個多邊形為
3、內角和等于外角和的多邊形是邊形、
4、內角和為1440°的多邊形是
5、若多邊形內角和等于外角和的3倍,則這個多邊形是邊形、
6、五邊形的對角線有
7、一個多邊形的內角和為4320°,則它的邊數為
8、多邊形每個內角都相等,內角和為720°,則它的每一個外角為
9、四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠、
10、四邊形的四個內角中,直角最多有個,鈍角最多有銳角最
(三)解答題
1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?
2、在每個內角都相等的多邊形中,若一個外角是它相鄰內角的則這個多邊形是幾邊形?
3、若一個多邊形的內角和與外角和的比為7:2,求這個多邊形的邊數。
4、一個多邊形的每一個內角都等于其相等外角的
5、一個多邊形少一個內角的度數和為2300°、
(1)求它的邊數;
(2)求少的那個內角的度數、
初中數學教案7
生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個面的交線。
側棱:相鄰兩個側面的交線。棱柱的所有側棱長都相等。
底面:棱柱有上、下兩個底面,形狀相同。
側面:棱柱的`側面都是平行四邊形。
立體圖形的分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點、無頂點。
棱柱:分為直棱柱、斜棱柱。直棱柱的側面是長方形。
特殊的四棱柱:長方體、正方體。正方體的每個面都是正方形。
圓柱:上、下兩個面都是圓形,側面展開圖是長方形。
圓錐:底面是圓形,側面展開圖是扇形。
截面:用一個平面去截一個幾何體,截出的面。
球:用一個平面去截,截面圖形是圓形。
正方體的截面:可以是正方形、長方形、梯形、三角形。
圓柱體的截面:可以是長方形、圓形、橢圓形、三角形。
展開與折疊:兩個面出現在同一位置的展開圖形,是不可折疊的。
從三個方向看物體的形狀:正面看(主視圖)、左面看(側視圖)、上面看(俯視圖)
初中數學教案8
第一課時
素質教育目標
(一)知識教學點
1.使學生初步了解統計知識是應用廣泛的數學內容 .
2.了解平均數的意義,會計算一組數據的平均數 .
3.當一組數據的數值較大時,會用簡算公式計算一組數據的平均數 .
(二)能力訓練點
培養學生的觀察能力、計算能力 .
(三)德育滲透點
1.培養學生認真、耐心、細致的學習態度和學習習慣 .
2.滲透數學來源于實踐,反地來又作用于實踐的觀點 .
(四)美育滲透點
通過本課的學習,滲透數學公式的簡單美和結構的嚴謹美,展示了寓深奧于淺顯,寓紛繁于嚴謹的辯證統一的數學美 .
重點·難點·疑點及解決辦法
1.教學重點:平均數的概念及其計算 .
2.教學難點:平均數的簡化計算 .
3.教學疑點:平均數簡化公式的應用,a如何選擇 .
4.解決辦法:分清兩個公式,公式②的運用要選擇一個適當的a .
教學步驟
(一)明確目標
在日常生活中,我們常與數據打交道,例如,電視臺每天晚上都要預報第二天當地的最低氣溫與最高氣溫,商店每天都要結算一下當天的營業額,每個班次的飛機都要統計一下乘客的人數等.這些都涉及數據的計算問題.請同學們思考下面問題.(教師出示幻燈片)
為了從甲乙兩名學生中選拔一人參加射擊比賽,對他們的射擊水平進行了測驗.兩人在相同條件下各射靶10次,命中的環數如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎樣比較兩個人的成績?2.應選哪一個人參加射擊比賽?
教師要引導學生觀察,給學生充分的時間去思考,并可以分成小組討論解決辦法.
對于這個問題,部分學生可能感到無從下手,部分學生可能想到去比較兩組數據的平均,讓學生動手具體算一下兩組數據的平均數結果它們相等在學生無法解決此問題的'情況下,教師說明,這正是本章要解決的問題之一(寫出課題).這樣做的目的是教師有意創設問題情境、制造懸念,這不僅能激發學生學習的積極性和自覺性,引起學生對所學課程的注意,還能誘發學生探求新知識的濃厚興趣.
(二)整體感知
解決類似上述的問題要用到統計學的知識,統計學是一門研究如何收集、整理、分析數據并據之做出推斷的科學,它以概率論為基礎,著重研究如何根據樣本的性質去推測總體的性質.在當今的信息時代,統計學的應用非常廣泛,以至于它已滲透到整個社會生活的各個方面.本章我們將學習統計學的一些初步知識.
(三)教學過程
這節課我們首先來學習平均數.
1.(出示幻燈片)請同學看下面問題:
某班第一小組一次數學測驗的成績如下:
86 91 100 72 93 89 90 85 75 95
這個小組的平均成績是多少?
教師引導學生動筆計算,并找一名學生到黑板板演,講完引例后,引導學生歸納出求平均數方法,這樣做使學生對平均數的計算公式能有深刻的認識 .
2.平均數的概念及計算公式
一般地,如果有n個數 .
那么 ①
叫做這n個數的平均數, 讀作“x撥” .
這是在初中數學課本中第一次出現帶有省略號的用字母表示的n個數相加的一般寫法 .學生對此可能會感到比較抽象,不太習慣,要向學生強調,采用這種寫法是簡化表示,是為了使問題的討論具有一般性 .教師應通過對公式的剖析,使學生正確理解公式,并掌握公式中各元素的意義 .
3.平均數計算公式①的應用
例1 一個地區某年1月上旬各天的最低氣溫依次是(單位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它們的平均氣溫 .
讓學生動手計算,以鞏固平均數計算公式(一名學生板演)
教師應強調:①解題格式 .②在統計學里處理的數據包括負數 .③在本章中,如無特殊說明,平均數計算結果保留的位數與原數據相同 .
例2 從一批機器零件毛坯中取出20件,稱得它們的質量如下(單位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
計算它們的平均質量 .(用投影儀打出)
引導學生兩人一組完成計算,然后一起對答案 .由于數據較大,計算較繁,可能會出現不同的答案 .正好為下面提出簡化計算公式作好鋪墊 .
教師提出問題:像例2這樣,數據較大,計算較繁,因而容易出錯,有沒有較為簡便的算法呢?引導學生觀察數據有什么特點?都接近于哪一個數?啟發學生討論,尋找簡便算法 .
學生回答:數據都在200左右波動,可將各數據同時減去200,轉而計算一組數值較小的新數據的平均數,至此讓學生再一次兩人一組用簡便方法計算例2,并與前面計算的結果相比較是否一樣 .
講完例2后,教師指出幾點:常數a的取法不是惟一的; 讀作“x——撇——撥”;;簡化計算的結果與前面毛算的結果相同 .
通過學生的動手計算,若產生困難或錯誤,教師及時點撥,引導學生尋找解決問題的方法,這不僅可以激發學生學習的興趣,更培養了學生的發散思維能力,同時也使學生對公式②的推導更容易接受 .
3.推導公式②
一般地,當一組數據 的各個數值較大時,可將各數據同時減去一個適當的常數a,得到,
那么 ,
因此,
即 ②
為了加深學生對公式②的認識,再讓學生指出例2的 、 、 各是什么?(學生回答)
課堂練習:
教材P148中~P149中1,2,3
(四)總結、擴展
知識小結:1.統計學是一門與數據打交道的學問,應用十分廣泛 .本章將要學習的是統計學的初步知識 .
2.求n個數據的平均數的公式① .
3.平均數的簡化計算公式② .這個公式很重要,要學會運用 .
方法小結:通過本節課我們學到了示一組數據平均數的方法 .當數據比較小時,可用公式①直接計算 .當數據比較大,而且都在某一個數左右波動時,可選用公式②進行計算 .
八、布置作業
教材P153中1、2、3、4 .
初中數學教案9
分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。
解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。
(2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3),且x≠0,∴x>0,當x>0時,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>
2。當x
>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的.被開方數都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何實數時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。
(4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數學教案10
教學目標
1.使學生認識字母表示數的意義,了解字母表示數是數學的一大進步;
2.了解代數式的概念,使學生能說出一個代數式所表示的數量關系;
3.通過對用字母表示數的講解,初步培養學生觀察和抽象思維的能力;
4.通過本節課的教學,使學生深刻體會從特殊到一般的的數學思想方法。
教學建議
1. 知識結構:本小節先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數的優越性,進而引出代數式的概念。
2.教學重點分析:教科書,介紹了小學用字母表示數的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現用字母表示數所具有的簡明、普遍的優越性,用字母表示是數學從算術到代數的一大進步,是代數的顯著特點。運用算術的方法解決問題,是小學學生的思維方法 ,現在,從具體的數過渡到用字母表示數,滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數式的概念課文沒有直接給出,而是用實例形象地說明了代數式的概念。對代數式的概念可以從三個方面去理解:
(1)從具體的數到用字母表示數,是抽象思維的開始,體現了特殊與一般的辨證關系,用字母表示數具有簡明、普遍的優越性.
(2)代數式中并不要求數和表示數的字母同時出現,單獨的一個數和字母也是代數式.如:2,m都是代數式.
等都不是代數式.
3.教學難點分析:能正確說出一個代數式的數量關系,即用語言表達代數式的意義,一定要理清代數式中含有的各種運算及其順序。用語言表達代數式的意義,具體說法沒有統一規定,以簡明而不引起誤會為出發點。
如:說出代數式7(a-3)的意義。
分析 7(a-3)讀成7乘a減3,這樣就產生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。
4.書寫代數式的注意事項:
(1)代數式中數字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數字應寫在字母前面.
如3×a ,應寫作3.a 或寫作3a ,a×b 應寫作3.a 或寫作ab .帶分數與字母相乘,應把帶分數化成假分數,
#FormatImgID_0#
.數字與數字相乘一般仍用“×”號.
(2)代數式中有除法運算時,一般按照分數的寫法來寫.
(3)含有加減運算的代數式需注明單位時,一定要把整個式子括起來.
5.對本節例題的分析:
例1是用代數式表示幾個比較簡單的數量關系,這些小學都學過.比較復雜一些的數量關系的代數式表示,課文安排在下一節中專門介紹.
例2是說出一些比較簡單的代數式的意義.因為代數式中用字母表示數,所以把字母也看成數,一種特殊的數,就可以像看待原來比較熟悉的數式一樣,說出一個代數式所表示的數量關系,只是另外還要考慮乘號可能省略等新規定而已.
6.教法建議
(1)因為這一章知識大部分在小學學習過,講授新課之前要先復習小學學過的運算律,在學生原有的認知結構上,提出新的問題。這樣即復習了舊知識,又引出了新知識,能激發學生的`學習興趣。在教學中,一定要注意發揮本章承上啟下的作用,搞好小學數學與初中代數的銜接,使學生有一個良好的開端。
(2)在本節的學習過程中,要使學生理解代數式的概念,首先要給學生多舉例子(學生比較熟悉、貼近現實生活的例子),使學生從感性上認識什么是代數式,理清代數式中的運算和運算順序,才能正確說出一個代數式所表示的數量關系,從而認識字母表示數的意義——普遍性、簡明性,也為列代數式做準備。
(3)條件比較好的學校,老師可選用一些多媒體課件,激發學生的學習興趣,增強學生自主學習的能力。
(4)老師在講解第一節之前,一定要對全章內容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學生系統的而不是一些零散的知識,久而久之,學生頭腦中自然會形成一個完整的知識體系。
(5)因為是新學期代數的第一節課,老師一定要給學生一個好印象,好的開端等于成功了一半。那么,怎么才能給學生留下好印象呢?首先,你要盡量在學生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學生說一段祝福語。第二,上課時盡量使用多種語言與學生交流,其中包括情感語言(眉目語言、手勢語言等),讓學生感受到老師對他的關心。
7.教學重點、難點:
重點:用字母表示數的意義
難點:學會用字母表示數及正確說出一個代數式所表示的數量關系。
教學設計示例
課堂教學過程設計
一、從學生原有的認知結構提出問題
1在小學我們曾學過幾種運算律?都是什么?如可用字母表示它們?
(通過啟發、歸納最后師生共同得出用字母表示數的五種運算律)
(1)加法交換律 a+b=b+a;
(2)乘法交換律 a·b=b·a;
(3)加法結合律 (a+b)+c=a+(b+c);
(4)乘法結合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以寫成“·”號或者省略不寫,但數與數之間相乘,一般仍用“×”;
(2)上面各種運算律中,所用到的字母a,b,c都是表示數的字母,它代表我們過去學過的一切數
2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?
3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?
4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?
(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)
此時,教師應指出:(1)用字母表示數可以把數或數的關系,簡明的表示出來;(2)在公式與中,用字母表示數也會給運算帶來方便;(3)像上面出現的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代數式.那么究竟什么叫代數式呢?代數式的意義又是什么呢?這正是本節課我們將要學習的內容.
三、講授新課
1代數式
單獨的一個數字或單獨的一個字母以及用運算符號把數或表示數的字母連接而成的式子叫代數式.學習代數,首先要學習用代數式表示數量關系,明確代數上的意義
2舉例說明
例1 填空:
(1)每包書有12冊,n包書有__________冊;
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長是a厘米的正方體的體積是_____立方厘米;
(4)產量由m千克增長10%,就達到_______千克
(此例題用投影給出,學生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 說出下列代數式的意義:
解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;
(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方
說明:(1)本題應由教師示范來完成;
(2)對于代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等
例3 用代數式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積
分析:用代數式表示用語言敘述的數量關系要注意:①弄清代數式中括號的使用;②字母與數字做乘積時,習慣上數字要寫在字母的前面
四、課堂練習
1填空:(投影)
(1)n箱蘋果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學生人數是x,其中女生占48%?則女生人數是____,男生人數是____
2說出下列代數式的意義:(投影)
3用代數式表示:(投影)
(1)x與y的和; (2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和; (4)a除以2的商與b除3的商的和
五、師生共同小結
首先,提出如下問題:
1本節課學習了哪些內容?2用字母表示數的意義是什么?
3什么叫代數式?
教師在學生回答上述問題的基礎上,指出:①代數式實際上就是算式,字母像數字一樣也可以進行運算;②在代數式和運算結果中,如有單位時,要正確地使用括號
六、作業
1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長
2張強比王華大3歲,當張強a歲時,王華的年齡是多少?
3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3 ,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?
4a千克大米的售價是6元,1千克大米售多少元?
5圓的半徑是R厘米,它的面積是多少?
6用代數式表示:
(1)長為a,寬為b米的長方形的周長;
(2)寬為b米,長是寬的2倍的長方形的周長;
(3)長是a米,寬是長的1/3 的長方形的周長;
(4)寬為b米,長比寬多2米的長方形的周長
初中數學教案11
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:
①,在實踐操作過程中,逐步探索圖形之間的平移關系;
②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;
3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結合。使用多媒體課件輔助教學。
四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設計:
創設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經過怎樣的.平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。
暢所欲言,互相補充。
課堂小結:
在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。
課堂練習:
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。
初中數學教案12
三維目標
一、知識與技能
1.能靈活列反比例函數表達式解決一些實際問題.
2.能綜合利用物理杠桿知識、反比例函數的知識解決一些實際問題.
二、過程與方法
1.經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題.
2. 體會數學與現實生活的緊密聯系,增強應用意識,提高運用代數方法解決問題的能力.
三、情感態度與價值觀
1.積極參與交流,并積極發表意見.
2.體驗反比例函數是有效地描述物理世界的重要手段,認識到數學是解決實際問題和進行交流的重要工具.
教學重點
掌握從物理問題中建構反比例函數模型.
教學難點
從實際問題中尋找變量之間的關系,關鍵是充分運用所學知識分析物理問題,建立函數模型,教學時注意分析過程,滲透數形結合的思想.
教具準備
多媒體課件.
教學過程
一、創設問題情境,引入新課
活動1
問 屬:在物理學中,有很多量之間的變化是反比例函數的關系,因此,我們可以借助于反比例函數的圖象和性質解決一些物理學中的問題,這也稱為跨學科應用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培.
(1)求I與R之間的函數關系式;
(2)當電流I=0.5時,求電阻R的值.
設計意圖:
運用反比例函數解決物理學中的一些相關問題,提高各學科相互之間的綜合應用能力.
師生行為:
可由學生獨立思考,領會反比例函數在物理學中的綜合應用.
教師應給“學困生”一點物理學知識的引導.
師:從題目中提供的信息看變量I與R之間的反比例函數關系,可設出其表達式,再由已知條件(I與R的一對對應值)得到字母系數k的值.
生:(1)解:設I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當I=0.5時,R=10I=100.5 =20(歐姆).
師:很好!“給我一個支點,我可以把地球撬動.”這是哪一位科學家的名言?這里蘊涵著什么 樣的原理呢?
生:這是古希臘科學家阿基米德的名言.
師:是的.公元前3世紀,古希臘科學家阿基米德發現了著名的“杠桿定律”: 若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;
阻力×阻力臂=動力×動力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動2
小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動力F與動力臂l有怎樣的函數關系?當動力臂為1.5米時,撬動石頭至少需要多大的力?
(2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?
設計意圖:
物理學中的很多量之間的變化是反比例函數關系.因此,在這兒又一次借助反比例函數的圖象和性質解決一些物理學中的問題,即跨學科綜合應用.
師生行為:
先由學生根據“杠桿定律”解決上述問題.
教師可引導學生揭示“杠桿乎衡”與“反比例函數”之間的關系.
教師在此活動中應重點關注:
①學生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數的關系;
②學生能否面對困難,認真思考,尋找解題的途徑;
③學生能否積極主動地參與數學活動,對數學和物理有著濃厚的興趣.
師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據“杠桿定律” 有
Fl=1200×0.5.得F =600l
當l=1.5時,F=6001.5 =400.
因此,撬動石頭至少需要400牛頓的力.
(2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據“杠桿定律”有
Fl=600,
l=600F .
當F=400×12 =200時,
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米.
生:也可用不等式來解,如下:
Fl=600,F=600l .
而F≤400×12 =200時.
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米.
生:還可由函數圖象,利用反比例函數的性質求出.
師:很棒!請同學們下去親自畫出圖象完成,現在請同學們思考下列問題:
用反比例函數的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?
生:因為阻力和阻力臂不變,設動力臂為l,動力為F,阻力×阻力臂=k(常數且k>0),所以根據“杠桿定理”得Fl=k,即F=kl (k為常數且k>0)
根據反比例函數的性質,當k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力.
師:其實反比例函數在實際運用中非常廣泛.例如在解決經濟預算問題中的應用.
活動3
問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當x=0.65元時,y=0.8.(1)求y與x之間的函數關系式;(2)若每度電的成本價0.3元,電價調至0.6元,請你預算一下本年度電力部門的純收人多少?
設計意圖:
在生活中各部門,經常遇到經濟預算等問題,有時關系到因素之間是反比例函數關系,對于此類問題我們往往由題目提供的信息得到變量之間的函數關系式,進而用函數關系式解決一個具體問題.
師生行為:
由學生先獨立思考,然后小組內討論完成.
教師應給予“學困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數關系為y=15x-2
(2)根據題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數關系,把x-0.4看成一個變量,于是可設出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動4
一定質量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數,請根據下圖中的.已知條件求出當密度ρ=1.1 kg/m3時二氧化碳氣體的體積V的值.
設計意圖:
進一步體現物理和反比例函數的關系.
師生行為
由學生獨立完成,教師講評.
師:若要求出ρ=1.1 kg/m3時,V的值,首先V和ρ的函數關系.
生:V和ρ的反比例函數關系為:V=990ρ .
生:當ρ=1.1kg/m3根據V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當密度ρ=1. 1 kg/m3時二氧化碳氣體的氣體為900m3.
四、課時小結
活動5
你對本節內容有哪些認識?重點掌握利用函數關系解實際問題,首先列出函數關系式,利用待定系數法求出解 析式,再根據解析式解得.
設計意圖:
這種形式的小結,激發了學生的主動參與意識,調動了學生的學習興趣,為每一位學生都創造了在數學學習活動中獲得成功的體驗機會,并為程度不同的學生提供了充分展示自己的機會,尊重學生的個體差異,滿足多樣化的學習需要,從而使小結不流于形式而具有實效性.
師生行為:
學生可分小組活動,在小組內交流收獲, 然后由小組代表在全班交流.
教師組織學生小結.
反比例函數與現實生活聯系非常緊密,特別是為討論物理中的一些量之間的關系打下了良好的基礎.用數學模型的解釋物理量之間的關系淺顯易懂,同時不僅要注意跨學科間的綜合,而本學科知識間的整合也尤為重要,例如方程、不等式、函數之間的不可分割的關系.
板書設計
17.2 實際問題與反比例函數(三)
1.
2.用反比例函數的知識解釋:在我們使 用撬棍時,為什么動 力臂越長越省力?
設阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數且k>0).動力和動力臂分別為F,l.則根據杠桿定理,
Fl=k 即F=kl (k>0且k為常數).
由此可知F是l的反比例函數,并且當k>0時,F隨l的增大而減小.
活動與探究
學校準備在校園內修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數關系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數表達式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應控制在什么范圍內?
x(m) 10 20 30 40
y(m)
過程:點A(40,10)在反比例函數圖象上說明點A的橫縱坐標滿足反比例函數表達式,代入可求得反比例函數k的值.
結果:(1)綠化帶面積為10×40=400(m2)
設該反比例函數的表達式為y=kx ,
∵圖象經過點A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數表達式為y=400x .
(2)把x=10,20,30,40代入表達式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長不超過40m,則它的寬應大于等于10m。
初中數學教案13
教學內容:在學生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關系。
教學目標:1、通過對"撲克"有趣的研究,培養起學生對生活中平常小事的關注。
2、調動學生豐富的聯想,養成一種思考的習慣。
教學重難點:"撲克"與年月日、季度的聯系。
教學過程:
一、談話引入
師:同學們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?
生:......
(教師補充,引發學生的好奇心。)
師: "撲克"還有一種作用,而且與數學有關!
生:......
二、新課
1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬
2、大王=太陽 小王=月亮 紅=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天數
所有牌的和+小王+大王=閏年的'天數
5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月
6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。
7、一種花色的和=一個季度的天數
一種花色有13張牌=一個季度有13個星期
三、小結
生活中有很多的數學,他每時每刻都在我們的身邊出現,只是我們大家沒有注意到。請大家都要學會留心觀察,做生活的有心人。
初中數學教案14
知識技能目標
1、理解反比例函數的圖象是雙曲線,利用描點法畫出反比例函數的圖象,說出它的性質;
2、利用反比例函數的圖象解決有關問題。
過程性目標
1、經歷對反比例函數圖象的觀察、分析、討論、概括過程,會說出它的性質;
2、探索反比例函數的圖象的性質,體會用數形結合思想解數學問題。
教學過程
一、創設情境
上節的練習中,我們畫出了問題1中函數的圖象,發現它并不是直線。那么它是怎么樣的曲線呢?本節課,我們就來討論一般的反比例函數(k是常數,k≠0)的圖象,探究它有什么性質。
二、探究歸納
1、畫出函數的圖象。
分析畫出函數圖象一般分為列表、描點、連線三個步驟,在反比例函數中自變量x≠0。
解
1、列表:這個函數中自變量x的取值范圍是不等于零的一切實數,列出x與y的對應值:
2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數的圖象(學生動手畫反比函數圖象,進一步掌握畫函數圖象的步驟)。
學生討論、交流以下問題,并將討論、交流的結果回答問題。
1、這個函數的圖象在哪兩個象限?和函數的圖象有什么不同?
2、反比例函數(k≠0)的圖象在哪兩個象限內?由什么確定?
3、聯系一次函數的性質,你能否總結出反比例函數中隨著自變量x的增加,函數y將怎樣變化?有什么規律?
反比例函數有下列性質:
(1)當k>0時,函數的`圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
注
1、雙曲線的兩個分支與x軸和y軸沒有交點;
2、雙曲線的兩個分支關于原點成中心對稱。
以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮上的時間少。
在問題2中反映了在面積一定的情況下,飼養場的一邊越長,另一邊越小。
三、實踐應用
例1若反比例函數的圖象在第二、四象限,求m的值。
分析由反比例函數的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(k≠0),當x>0時,y隨x的增大而增大,求一次函數y=kx—k的圖象經過的象限。
分析由于反比例函數(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數y=kx—k的圖象經過一、二、四象限。
例3已知反比例函數的圖象過點(1,—2)。
(1)求這個函數的解析式,并畫出圖象;
(2)若點A(—5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數的圖象過點(1,—2),即當x=1時,y=—2。由待定系數法可求出反比例函數解析式;再根據解析式,通過列表、描點、連線可畫出反比例函數的圖象;
(2)由點A在反比例函數的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。
解(1)設:反比例函數的解析式為:(k≠0)。
而反比例函數的圖象過點(1,—2),即當x=1時,y=—2。
所以,k=—2。
即反比例函數的解析式為:。
(2)點A(—5,m)在反比例函數圖象上,所以,
點A的坐標為。
點A關于x軸的對稱點不在這個圖象上;
點A關于y軸的對稱點不在這個圖象上;
點A關于原點的對稱點在這個圖象上;
例4已知函數為反比例函數。
(1)求m的值;
(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?
(3)當—3≤x≤時,求此函數的最大值和最小值。
解(1)由反比例函數的定義可知:解得,m=—2。
(2)因為—2<0,所以反比例函數的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。
(3)因為在第個象限內,y隨x的增大而增大,
所以當x=時,y最大值=;
當x=—3時,y最小值=。
所以當—3≤x≤時,此函數的最大值為8,最小值為。
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
(1)寫出用高表示長的函數關系式;
(2)寫出自變量x的取值范圍;
(3)畫出函數的圖象。
解(1)因為100=5xy,所以。
(2)x>0。
(3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數的圖象只是位于第一象限內的一個分支。
四、交流反思
本節課學習了畫反比例函數的圖象和探討了反比例函數的性質。
1、反比例函數的圖象是雙曲線(hyperbola)。
2、反比例函數有如下性質:
(1)當k>0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
五、檢測反饋
1、在同一直角坐標系中畫出下列函數的圖象:
(1);(2)。
2、已知y是x的反比例函數,且當x=3時,y=8,求:
(1)y和x的函數關系式;
(2)當時,y的值;
(3)當x取何值時,?
3、若反比例函數的圖象在所在象限內,y隨x的增大而增大,求n的值。
4、已知反比例函數經過點A(2,—m)和B(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0
初中數學教案15
一、教學目標
1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;
2.培養學生觀察能力,提高他們分析問題和解決問題的能力;
3.使學生初步養成正確思考問題的良好習慣。
二、教學重點和難點
一元一次方程解簡單的應用題的方法和步驟。
三、課堂教學過程設計
(一)從學生原有的認知結構提出問題
在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優越性呢?
為了回答上述這幾個問題,我們來看下面這個例題。
例1 某數的3倍減2等于某數與4的和,求某數。
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3。
答:某數為3。
(其次,用代數方法來解,教師引導,學生口述完成)
解法2:設某數為x,則有3x-2=x+4。
解之,得x=3。
答:某數為3。
縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數,列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一。
我們知道方程是一個含有未知數的等式,而等式表示了一個相等關系。因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。
本節課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。
(二)師生共同分析、研究一元一次方程解簡單應用題的方法和步驟
例2 某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?
上述分析過程可列表如下:
解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42 500,
所以x=50 000。
答:原來有50 000千克面粉。
此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應指出:
(1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的一個相等關系來列方程;
(2)例2的解方程過程較為簡捷,同學應注意模仿。
依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:
(1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數;
(2)根據題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵一步);
(3)根據相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;
(4)求出所列方程的'解;
(5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義。
例3 (投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤。并嚴格規范書寫格式。)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5。
其蘋果數為3× 5+9=24。
答:第一小組有5名同學,共摘蘋果24個。
學生板演后,引導學生探討此題是否可有其他解法,并列出方程。
(設第一小組共摘了x個蘋果,則依題意,得)
(三)課堂練習
1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?
2.我國城鄉居民1988年末的儲蓄存款達到3 802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。
3.某工廠女工人占全廠總人數的35%,男工比女工多252人,求全廠總人數。
(四)師生共同小結
首先,讓學生回答如下問題:
1.本節課學習了哪些內容?
2.列一元一次方程解應用題的方法和步驟是什么?
3.在運用上述方法和步驟時應注意什么?
依據學生的回答情況,教師總結如下:
(1)代數方法的基本步驟是:全面掌握題意;恰當選擇變數;找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;
(2)以上步驟同學應在理解的基礎上記憶。
(五)作業
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產電視機20xx臺,這比前年10月產量的2倍還多150臺。這家工廠前年10月生產電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元。求得到一等獎與二等獎的人數。
【初中數學教案】相關文章:
初中數學教案08-12
初中數學教案[經典]02-21
初中數學教案02-21
人教版初中數學教案07-17
初中數學教案模板11-02
角初中數學教案12-30
初中數學教案【熱】11-17
【精】初中數學教案11-21
初中數學教案【推薦】11-22
初中數學教案《圓》03-05