數學八年級上冊教案集合15篇
作為一名辛苦耕耘的教育工作者,通常會被要求編寫教案,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。教案應該怎么寫呢?下面是小編收集整理的數學八年級上冊教案,僅供參考,希望能夠幫助到大家。
數學八年級上冊教案1
第11章平面直角坐標系
11。1平面上點的坐標
第1課時平面上點的坐標(一)
教學目標
【知識與技能】
1。知道有序實數對的概念,認識平面直角坐標系的相關知識,如平面直角坐標系的構成:橫軸、縱軸、原點等。
2。理解坐標平面內的點與有序實數對的一一對應關系,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。
3。能在方格紙中建立適當的平面直角坐標系來描述點的位置。
【過程與方法】
1。結合現實生活中表示物體位置的例子,理解有序實數對和平面直角坐標系的作用。
2。學會用有序實數對和平面直角坐標系中的點來描述物體的位置。
【情感、態度與價值觀】
通過引入有序實數對、平面直角坐標系讓學生體會到現實生活中的問題的解決與數學的發展之間有聯系,感受到數學的價值。
重點難點
【重點】
認識平面直角坐標系,寫出坐標平面內點的坐標,已知坐標能在坐標平面內描出點。
【難點】
理解坐標系中的坐標與坐標軸上的數字之間的關系。
教學過程
一、創設情境、導入新知
師:如果讓你描述自己在班級中的位置,你會怎么說?
生甲:我在第3排第5個座位。
生乙:我在第4行第7列。
師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數字確定下來。
二、合作探究,獲取新知
師:在以上幾個問題中,我們根據一個物體在兩個互相垂直的方向上的數量來表示這個物體
的位置,這兩個數量我們可以用一個實數對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?
生:3排5號。
師:對,它們對應的不是同一個位置,所以要求表示物體位置的這個實數對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?
生:用一個有序的實數對來表示。
師:對。我們學過實數與數軸上的點是一一對應的,有序實數對是不是也可以和一個點對應起來呢?
生:可以。
教師在黑板上作圖:
我們可以在平面內畫兩條互相垂直、原點重合的數軸。水平的數軸叫做x軸或橫軸,取向右為
正方向;豎直的數軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構成了平面直角坐標系,這個平面叫做坐標平面。
師:有了平面直角坐標系,平面內的點就可以用一個有序實數對來表示了,F在請大家自己動手畫一個平面直角坐標系。
學生操作,教師巡視。教師指正學生易犯的錯誤。
教師邊操作邊講解:
如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在后,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。
教師多媒體出示:
師:如圖,請同學們寫出A、B、C、D這四點的坐標。
生甲:A點的坐標是(—5,4)。
生乙:B點的坐標是(—3,—2)。
生丙:C點的坐標是(4,0)。
生丁:D點的坐標是(0,—6)。
師:很好!我們已經知道了怎樣寫出點的坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?
教師邊操作邊講解:
在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的.點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。
學生動手作圖,教師巡視指導。
三、深入探究,層層推進
師:兩個坐標軸把坐標平面劃分為四個區域,從x軸正半軸開始,按逆時針方向,把這四個區域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬于任何一個象限。在同一象限內的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?
生:都一樣。
師:對,由作垂線求坐標的過程,我們知道第一象限內的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內點的坐標的符號嗎?
生:能。第二象限內的點的坐標的符號為(—,+),第三象限內的點的坐標的符號為(—,—),第四象限內的點的坐標的符號為(+,—)。
師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?
生:能,在第二象限。
四、練習新知
師:現在我給出幾個點,你們判斷一下它們分別在哪個象限。
教師寫出四個點的坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A點在第三象限。
生乙:B點在第四象限。
生丙:C點不屬于任何一個象限,它在y軸上。
生。篋點不屬于任何一個象限,它在x軸上。
師:很好!現在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。
學生作圖,教師巡視,并予以指導。
五、課堂小結
師:本節課你學到了哪些新的知識?
生:認識了平面直角坐標系,會寫出坐標平面內點的坐標,已知坐標能描點,知道了四個象限以及四個象限內點的符號特征。
教師補充完善。
教學反思
物體位置的說法和表述物體的位置等問題,學生在實際生活中經常遇到,但可能沒有想到這些問題與數學的聯系。教師在這節課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數學的魅力。在教學中我讓學生由生活中的實例與坐標的聯系感受坐標的實用性,增強了學生學習數學的興趣。
第2課時平面上點的坐標(二)
教學目標
【知識與技能】
進一步學習和應用平面直角坐標系,認識坐標系中的圖形。
【過程與方法】
通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發展抽象思維能力。
【情感、態度與價值觀】
培養學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。
重點難點
【重點】
理解平面上的點連接成的圖形,計算圍成的圖形的面積。
【難點】
不規則圖形面積的求法。
教學過程
一、創設情境,導入新知
師:上節課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,并在上面標出A(5,1),B(2,1),C(2,—3)這三個點。
學生作圖。
教師邊操作邊講解:
二、合作探究,獲取新知
師:現在我們把這三個點用線段連接起來,看一下得到的是什么圖形?
生甲:三角形。
生乙:直角三角形。
師:你能計算出它的面積嗎?
生:能。
教師挑一名學生:你是怎樣算的呢?
生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。
師:很好!
教師邊操作邊講解:
大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么
圖形?
學生完成操作后回答:平行四邊形。
師:你能計算它的面積嗎?
生:能。
教師挑一名學生:你是怎么計算的呢?
生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:
教師多媒體出示下圖:
數學八年級上冊教案2
單元(章)主題第三章 直棱柱任課教師與班級
本課(節)課題3.1 認識直棱柱第 1 課時 / 共 課時
教學目標(含重點、難點)及
設置依據教學目標
1、了解多面體、直棱柱的有關概念.
2、會認直棱柱的側棱、側面、底面.
3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.
教學重點與難點
教學重點:直棱柱的有關概念.
教學難點:本節的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
教學準備每個學生準備一個幾何體,(分好學習小組)教師準備各種直棱柱和長方體、立方體模型
教 學 過 程
內容與環節預設、簡明設計意圖二度備課(即時反思與糾正)
一、創設情景,引入新課
師:在現實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?
析:學生很容易回答出更多的答案。
師:(繼續補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節的粽子等。
二、合作交流,探求新知
1.多面體、棱、頂點概念:
師:(出示長方體,立方體模型)這是我們熟悉的'立體圖形,它們是有幾個平面圍成的?都有什么相同特點?
析:一個同學回答,然后小結概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點
2.合作交流
師:以學習小組為單位,拿出事先準備好的幾何體。
學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描
述其特征。)
師:同學們再討論一下,能否把自己的語言轉化為數學語言。
學生活動:分小組討論。
說明:真正體現了“以生為本”。讓學生在主動探究中發現知識,充分發揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區別)
師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的相鄰兩條側棱互相平行且相等。
4.學以至用
出示例題。(先請學生單獨考慮,再作講解)
析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養成發現問題,解決問題的創造性思維習慣)
最后完成例題中的“想一想”
5.鞏固練習(學生練習)
完成“課內練習”
三、小結回顧,反思提高
師:我們這節課的重點是什么?哪些地方比較難學呢?
合作交流后得到:重點直棱柱的有關概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設計
作業布置或設計作業本及課時特訓
數學八年級上冊教案3
一、教材分析教材的地位和作用:
本節內容是第一課時《軸對稱》,本節立足于學生已有的生活經驗和數學活動經歷,從觀察生活中的軸對稱現象開始,從整體的角度認識軸對稱的特征;同時本節內容與圖形的三種變換操作(平移、翻折、旋轉)之一的“翻折”有著不可分割的聯系,通過對這一節課的學習,使學生從對圖形的感性認識上升到對軸對稱的理性認識,為進一步學習軸對稱性質及后面學習等腰三角形和圓等有關知識奠定基礎。同時這一節也是聯系數學與生活的橋梁。
二、學情分析
八年級學生有一定的知識水平,已經初步形成了一定觀察能力、語言表達能力,這節課是在學生學習了“全等三角形”相關內容之后安排的一節課,學生已經具備了一定的推理能力,因此,這節課通過觀察生活中的實例和動手實踐,讓學生自己去發現和總結軸對稱圖形和軸對稱的概念及它們之間的區別與聯系是切實可行的。
三、教學目標及重點、難點的確定
根據新課程標準、教材內容特點、和學生已有的認知結構、心理特征,我確定本節教學目標、重點、難點如下:
(一)教學目標:
1、知識技能
(1)理解并掌握軸對稱圖形的概念,對稱軸;能準確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.
(2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.
(3)了解軸對稱圖形和軸對稱的聯系與區別.
2、過程與方法目標
經歷“觀察——比較——操作——概括——總結一應用”的學習過程,培養學生的動手實踐能力、抽象思維和語言表達能力.
3、情感、態度與價值觀
通過對生活中數學問題的探究,進一步提高學生學數學、用數學的意識,在自主探究、合作交流的過程中,體會數學的重要作用,培養學生的學習興趣,熱愛生活的情感和欣賞圖形的對稱美。
(二)教學重點:軸對稱圖形和軸對稱的有關概念.
(三)教學難點:軸對稱圖形與軸對稱的聯系、區別
.四、教法和學法設計
本節課根據教材內容的特點和八年級學生的知識結構和心理特征。我選擇的:
【教法策略】采用以直觀演示法和實驗發現法為主,設疑誘導法為輔。教學中教學中通過豐富的圖片展示,創設出問題情景,誘導學生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發學生探求知識的欲望,逐步推導歸納得出結論,使學生始終處于主動探索問題的積極狀態,使不同層次學生的知識水平得到恰當的發展和提高。
【學法策略】:讓學生在“觀察----比較——操作——概括——檢驗——應用”的學習過程中,自主參與知識的發生、發展、形成的過程,使學生在自主探索和合作交流中理解和掌握本節課的有關內容。
【輔助策略】我利用多媒體課件輔助教學,適時呈現問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率
五、說程序設計:
新的課程標準指出學生的學習內容應該是現實的有意義的,有利于學生進行觀察、試驗、猜測、驗證、推理與交流等數學活動。為了達到預期的教學目標,我對整個教學過程進行了設計。
(一)、觀圖激趣、設疑導入。
出示圖片,設計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。
[設計意圖]以興趣為先導,創設學生喜聞樂見的故事情景,激發了學生濃厚的`學習興趣,
(二)、實踐探索、感悟特征.
《活動一(課件演示)觀察這些圖形有什么特點?》在這個環節中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學生自己觀察,并引導學生感知,無論是隨風起舞的風箏,凌空翱翔的飛機,還是古今中外各式風格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學生觀察、猜想、探究、討論,教師可以適當地引導,讓學生發現:把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導學生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。
為了進一步認識軸對稱圖形的特點又出示了一組練習
(練習1)這是一組常見幾何圖形,要求學生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸
[設計意圖]通過這個練習題不僅讓學生鞏固了軸對稱圖形的概念,而且讓學生認識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學生認識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。
(練習2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養了學生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發了學生的學習興趣,而且也拓展了學生的知識面。
(三)、動手操作、再度探索新知。
將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學中注重學生活動,鼓勵學生親自實踐,積極思考,在樂學的氛圍中,培養學生的動手能力,從而引出軸對稱概念。
再次引導學生討論、歸納得出軸對稱的概念……。之后再結合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結合圖形加以認識。
(四)、鞏固練習、升華新知。
出示幾幅圖形,請同學們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,
在這組練習中讓學生動手、動口、動眼、動腦,充分調動了學生的各種感官參與學習,既加深了對兩個概念的理解,又鍛煉了同學的各方面能力。完成這組練習題后讓學生,歸納軸對稱圖形及軸對稱區別與聯系,先讓學生自己歸納,然后用多媒體展示。
(課件演示)軸對稱圖形及兩個圖形成軸對稱區別與聯系
(五)、綜合練習、發展思維。
1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。
2、判斷:
生活中不僅有些物體的形狀是軸對稱圖形,我們所學的數字、字母和漢字中也有一些可以看成軸對稱圖形。
(1)下面的數字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?
0123456789ABCDEFGH
3、像這樣寫法的漢字哪些是軸對稱圖形?
口工用中由日直水清甲
(這幾道題的練習做到了知識性、技能性、思想性和藝術性溶為一體。這樣設計,不但活躍了課堂氣氛,又檢查了學生掌握新知的情況,而且激發了學生的學習興趣,又讓學生感到數學就在自己的身邊)
(六)歸納小結、布置作業
[設計意圖]培養學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。作業布置要有層次,照顧學生個體差異使不同的人在數學上獲得不同的發展!
六、設計說明
這節課,我依據課程標準、教材特點、遵循學生的認知規律。通過六個環節的教學設計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學生輕松掌握了軸對稱圖形與關于直線成軸對稱兩個概念,指導學生操作、觀察、引導概括,獲取新知;同時注重培養學生的形象思維和抽象思維。在教學過程中讓學生動口、動手、動眼、動腦,使學生學有興趣、學有所獲。這就是我對本節課的理解和說明。
數學八年級上冊教案4
教學目標:
1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。
2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創新能力。
3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發展學生的空間觀念,增強審美意識,培養學生積極進取的生活態度。
重點與難點:
重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。
難點:分析典型圖案的設計意圖。
疑點:在設計的圖案中清晰地表現自己的設計意圖
教具學具準備:
提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
教學過程設計:
1、情境導入:在優美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)
明確在欣賞了圖案后,簡單地復習平移、旋轉的概念,為下面圖案的`設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數),而圖(2)可以通過平移形成。
2、課本
1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。
評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
(二)課內練習
(1) 以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。
(2) 利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。
(三)議一議
生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。
(四)課時小結
本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。
通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)
八年級數學上冊教案(五)延伸拓展
進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。
數學八年級上冊教案5
一、內容和內容解析
1.內容
三角形中相關元素的概念、按邊分類及三角形的三邊關系.
2.內容解析
三角形是一種最基本的幾何圖形,是認識其他圖形的基礎,在本章中,學好了三角形的有關概念和性質,為進一步學習多邊形的相關內容打好基礎,本節主要介紹與三角形的的概念、按邊分類和三角形三邊關系,使學生對三角形的有關知識有更為深刻的理解.
本節課的教學重點:三角形中的相關概念和三角形三邊關系.
本節課的教學難點:三角形的三邊關系.
二、目標和目標解析
1.教學目標
(1)了解三角形中的相關概念,學會用符號語言表示三角形中的.對應元素.
(2)理解并且靈活應用三角形三邊關系.
2.教學目標解析
(1)結合具體圖形,識三角形的概念及其基本元素.
(2)會用符號、字母表示三角形中的相關元素,并會按邊對三角形進行分類.
(3)理解三角形兩邊之和大于第三邊這一性質,并會運用這一性質來解決問題.
三、教學問題診斷分析
在探索三角形三邊關系的過程中,讓學生經歷觀察、探究、推理、交流等活動過程,培養學生的和推理能力和合作學習的精神.
四、教學過程設計
1.創設情境,提出問題
問題回憶生活中的三角形實例,結合你以前對三角形的了解,請你給三角形下一個定義.
師生活動:先讓學生分組討論,然后各小組派代表發言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解.
【設計意圖】三角形概念的獲得,要讓學生經歷其描述的過程,借此培養學生的語言表述能力,加深學生對三角形概念的理解.
2.抽象概括,形成概念
動態演示“首尾順次相接”這個的動畫,歸納出三角形的定義.
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
【設計意圖】讓學生體會由抽象到具體的過程,培養學生的語言表述能力.
補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法.
師生活動:結合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡.
【設計意圖】進一步加深學生對三角形中相關元素的認知,并進一步熟悉幾何語言在學習中的應用.
3.概念辨析,應用鞏固
如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來.
1.以AB為一邊的三角形有哪些?
2.以∠D為一個內角的三角形有哪些?
3.以E為一個頂點的三角形有哪些?
4.說出ΔBCD的三個角.
師生活動:引導學生從概念出發進行思考,加深學生對三角形中相關元素概念的理解.
4.拓廣延伸,探究分類
我們知道,按照三個內角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法.
師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯系,強化學生對三角形按邊分類的理解.
數學八年級上冊教案6
一、知識點:
1.坐標(x,y)與點的對應關系
有序數對:有順序的兩個數x與y組成的數對,記作(x,y);
注意:x、y的先后順序對位置的影響。
2.平面直角坐標系:
(1)、構成坐標系的各種名稱:四個象限和兩條坐標軸
(2)、各種特殊點的坐標特點:坐標軸上的點至少有一個坐標
為0;X軸上的點的縱坐標為0,y軸上點的橫坐標為0,原點
的坐標為(0,0)。
3.坐標(x,y)的幾何意義
平面直角坐標系是代數與幾何聯系的紐帶,坐標(x,y)有某
幾何意義,如點A(-3,2)它到x軸、y軸、原點的距離分別是︱x︱
=︱2︱=2,︱y︱=︱-3︱=3,OA = 。
4.注意各象限內點的坐標的符號
點P(x,y)在第一象限內,則x0,y0,反之亦然.
點P(x,y)在第二象限內,則x0,y0,反之亦然.
點P(x,y)在第三象限內,則x0,y0,反之亦然.
點P(x,y)在第四象限內,則x0,y0,反之亦然.
5.平行于坐標軸的直線的點的坐標特點:
平行于x軸(或橫軸)的直線上的點的這 縱 坐標相同;
平行于y軸(或縱軸)的直線上的點的 橫 坐標相同。
6.各象限的角平分線上的點的坐標特點:
第一、三象限角平分線上的點的橫縱坐標 相同 ;
第二、四象限角平分線上的點的橫縱坐標 互為相反數 。
7.與坐標軸、原點對稱的點的坐標特點:
關于x軸對稱的點的橫坐標 相同 ,縱坐標 互為相反數
關于y軸對稱的點的縱坐標 相同 ,橫坐標 互為相反數
關于原點對稱的點的橫坐標、縱坐標都 互為相反數
8.特殊位置點的特殊坐標:
坐標軸上點P(x,y) 連線平行于坐標軸的點 點P(x,y)在各象限的坐標特點
X軸 Y軸 原點 平行X軸 平行Y軸 第一象限 第二象限 第三象限 第四象限
(x,0) (0,y) (0,0) 縱坐標 相同
橫坐標 不同 橫坐標 相同
縱坐標 不同
9.利用平面直角坐標系繪制區域內一些點分布情況平面圖過程如下:
(1)建立坐標系,選擇一個適當的參照點為原點,確定x軸、y軸的正方向;
(2)根據具體問題確定適當的比例尺,在坐標軸上標出單位長度;
(3)在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
10.用坐標表示平移:見下圖
二、典型訓練:
1.位置的確定
1、如圖,圍棋盤的左下角呈現的是一局圍棋比賽中的幾手棋.為記錄棋譜方便,橫線用數字表示.縱線用英文字母表示,這樣,黑棋①的位置可記為(C,4),白棋②的位置可記為(E,3),則白棋⑨的位置應記為 _____.
2、如圖所示的象棋盤上,若帥位于點(1,﹣3)上,相位于點(3,﹣3)上,則炮位于點( )
A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)
2.平面直角坐標系內的點的特點: 一)確定字母取值范圍:
1、點A(m+3,m+1)在x軸上,則A點的坐標為( )
A (0,-2) B、(2,0) C、(4,0) D、(0,-4)
2、若點M(1, )在第四象限內,則 的取值范圍是 .
3、已知點P(x,y+1)在第二象限,則點Q(﹣x+2,2y+3)在第 象限.
二)確定點的坐標:
1、點 在第二象限內, 到 軸的距離是4,到 軸的距離是3,那么點 的坐標為( )
A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)
2、若點P在x軸的下方,y軸的左方,到每條坐標軸的距離都是3,則點P的坐標為( )
A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)
3、在x軸上與點(0,﹣2)距離是4個單位長度的點有 .
4、若點(5﹣a,a﹣3)在第一、三象限角平分線上,則a= .
三)確定對稱點的坐標:
1、P(﹣1,2)關于x軸對稱的點是 ,關于y軸對稱的點是 ,關于原點對稱的點是 .
2、已知點 關于 軸的對稱點為 ,則 的值是( )
A. B. C. D.
3、在平面直角坐標系中,將點A(1,2)的橫坐標乘以﹣1,縱坐標不變,
得到點A,則點A和點A的關系是( )
A、關于x軸對稱 B、將點A向x軸負方向平移一個單位得點A
C、關于原點對稱 D、關于y軸對稱
3.與平移有關的問題
1、通過平移把點A(2,﹣3)移到點A(4,﹣2),按同樣的平移方式,點B(3,1)移到點B,則點B的坐標是 .
2、如圖,點A坐標為(-1,1),將此小船ABCD向左平移2個單位,再向上平移3個單位得ABCD.
(1)畫出平面直角坐標系;
(2)畫出平移后的小船ABCD,
寫出A,B,C,D各點的坐標.
3、在平面直角坐標系中,□ABCD的頂點A、B、D的坐標分別是(0,0),(5,0),(2,3),則頂點C的坐標是( )
A.(3,7) B.(5,3) C.(7,3) D.(8,2)
4.建立直角坐標系
1、如圖1是某市市區四個旅游景點示意圖(圖中每個小正方形的邊長為1個單位長度),請以某景點為原點,建立平面直角坐標系,用坐標表示下列景點的位置.①動物園 ,②烈士陵園 .
2、如圖,機器人從A點,沿著西南方向,行了4 個單位到達B點后,觀察到原點O在它的南偏東60的方向上,則原來A的坐標為 (結果保留根號).
3、如圖,△AOB是邊長為5的等邊三角形,則A,B兩點的坐標分別是A ,B .
5.創新題: 一)規律探索型:
1、如圖2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、.則點A2015的坐標為________.
二)閱讀理解型:
1、在直角坐標系中,我們把橫、縱坐標都為整數的點叫做整點,設坐標軸的單位長度為1cm,整點P從原點O出發,速度為1cm/s,且整點P作向上或向右運動(如圖1所示.運動時間(s)與整點(個)的關系如下表:
整點P從原點出發的時間(s) 可以得到整點P的坐標 可以得到整點P的個數
1 (0,1)(1,0) 2
2 (0,2)(1,1),(2,0) 3
3 (0,3)(1,2)(2,1)(3,0) 4
根據上表中的規律,回答下列問題:
(1)當整點P從點O出發4s時,可以得到的整點的個數為________個.
(2)當整點P從點O出發8s時,在直角坐標系中描出可以得到的所有整點,并順次連結這些整點.
(3)當整點P從點O出發____s時,可以得到整點(16,4)的位置.
三、易錯題:
1、 已知點P(4,a)到橫軸的距離是3,則點P的坐標是_____.
2、 已知點P(m,n)到x軸的距離為3,到y軸的距離等于5,則點P的坐標是_____.
3、 已知點P(m,2m-1)在x軸上,則P點的坐標是_______.
4、如圖,四邊形ABCD各個頂點的坐標分別為 (2,8),(11,6),(14,0),(0,0)。
(1)確定這個四邊形的.面積;
(2)如果把原來ABCD各個頂點縱坐標保持不變,橫坐標增加2,所得的四邊形面積又是多少?
四、提高題:
1、在平面直角坐標系中,點(-2,4)所在的象限是( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
2、若a0,則點P(-a,2)應在 ( )
A.第象限內 B.第二象限內 C.第三象限內 D.第四象限內
3、已知 ,則點 在第______象限.
4、若 +(b+2)2=0,則點M(a,b)關于y軸的對稱點的坐標為______.
5、點P(1,2)關于y軸對稱點的坐標是 . 已知點A和點B(a,-b)關于y軸對稱,求點A關于原點的對稱點C的坐標___________.
6、已知點 A(3a-1,2-b),B(2a-4,2b+5).
若A與B關于x軸對稱,則a=________,b=_______;若A與B關于y軸對稱,則a=________,b=_______;
若A與B關于原點對稱,則a=________,b=_______.
7、學生甲錯將P點的橫坐標與縱坐標的次序顛倒,寫成(m,n),學生乙錯將Q點的坐標寫成它關于x軸對稱點的坐標,寫成(-n,-m),則P點和Q點的位置關系是_________.
8、點P(x,y)在第四象限內,且|x|=2,|y| =5,P點關于原點的對稱點的坐標是_______.
9、以點(4,0)為圓心,以5為半徑的圓與y軸交點的坐標為______.
10、點P( , )到x軸的距離為________,到y軸的距離為_________。
11、點P(m,-n)與兩坐標軸的距離___________________________________________________。
12、已知點P到x軸和y軸的距離分別為3和4,則P點坐標為__________________________.
13、點P在第二象限,若該點到x軸的距離為,到y軸的距離為1,則點P的坐標是( )
A.( 1, ) B.( ,1) C.( , ) D.(1, )
14、點A(4,y)和點B(x, ),過A,B兩點的直線平行x軸,且 ,則 ______, ______.
15、已知等邊三角形ABC的邊長是4,以AB邊所在的直線為x軸,AB邊的中點為原點,建立直角坐標系,則頂點C的坐標為________________.
16、通過平移把點A(2,-3)移到點A(4,-2),按同樣的平移方式,點B(3,1)移到點B,則點B的坐標是_____________.
17、如圖11,若將△ABC繞點C順時針旋轉90后得到△ABC,則A點的對應點A的坐標是( )
A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)
18、平面直角坐標系 內有一點A(a,b),若ab=0,則點A的位置在( ).
A.原點 B. x軸上 C.y 軸上 D.坐標軸上
19、已知等邊△ABC的兩個頂點坐標為A(-4,0)、B(2,0),則點C的坐標為______,△ABC的面積為______.
20、(1)將下圖中的各個點的縱坐標不變,橫坐標都乘以-1,與原圖案相比,所得圖案有什么變化?
(2)將下圖中的各個點的橫坐標不變,縱坐標都乘以-1,與原圖案相比,所得圖案有什么變化?
(3)將下圖中的各個點的橫坐標都乘以-2,縱坐標都乘以-2,與原圖案相比,所得圖案有什么變化?
數學八年級上冊教案7
教學目標
。保J識變量、常量.
2.學會用含一個變量的代數式表示另一個變量.
教學重點
。保J識變量、常量.
2.用式子表示變量間關系.
教學難點
用含有一個變量的式子表示另一個變量.
教學過程
Ⅰ.提出問題,創設情境
情景問題:一輛汽車以60千米/小時的速度勻速行駛,行駛里程為s千米.行駛時間為t小時.
。保埻瑢W們根據題意填寫下表:
t/時 1 2 3 4 5
s/千米
。玻谝陨线@個過程中,變化的量是________.變變化的量是__________.
。常囉煤瑃的式子表示s.
Ⅱ.導入新課
首先讓學生思考上面的幾個問題,可以互相討論一下,然后回答.
從題意中可以知道汽車是勻速行駛,那么它1小時行駛60千米,2小時行駛2×60千米,即120千米,3小時行駛3×60千米,即180千米,4小時行駛4×60千米,即240千米,5小時行駛5×60千米,即300千米……因此行駛里程s千米與時間t小時之間有關系:s=60t.其中里程s與時間t是變化的量,速度60千米/小時是不變的量.
這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時間的變化過程.其實現實生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規律變化,其中有些量的是按照某種規律變化的,如上例中的時間t、里程s,有些量的數值是始終不變的,如上例中的速度60千米/小時.
[活動一]
1.每張電影票售價為10元,如果早場售出票150張,日場售出205張,晚場售出310張.三場電影的票房收入各多少元.設一場電影售票x張,票房收入y元.怎樣用含x的式子表示y?
。玻谝桓鶑椈傻南露藨覓熘匚铮淖儾⒂涗浿匚锏馁|量,觀察并記錄彈簧長度的變化,探索它們的變化規律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質量m的式子表示受力后的彈簧長度?
引導學生通過合理、正確的思維方法探索出變化規律.
結論:
1.早場電影票房收入:150×10=1500(元)
日場電影票房收入:205×10=20xx(元)
晚場電影票房收入:310×10=3100(元)
關系式:y=10x
2.掛1kg重物時彈簧長度: 1×0.5+10=10.5(cm)
掛2kg重物時彈簧長度:2×0.5+10=11(cm)
掛3kg重物時彈簧長度:3×0.5+10=11.5(cm)
關系式:L=0.5m+10
通過上述活動,我們清楚地認識到,要想尋求事物變化過程的規律,首先需確定在這個過程中哪些量是變化的,而哪些量又是不變的.在一個變化過程中,我們稱數值發生變化的量為變量(variable),那么數值始終不變的量稱之為常量(constant).如上述兩個過程中,售出票數x、票房收入y;重物質量m,彈簧長度L都是變量.而票價10元,彈簧原長10cm……都是常量.
[活動二]
。保嬕粋面積為10cm2的圓,圓的半徑應取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r?
。玻10m長的繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計算相應的矩形面積的.值,探索它們的變化規律:設矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S?
結論:
1.要求已知面積的圓的半徑,可利用圓的面積公式經過變形求出S= r2r=
面積為10cm2的圓半徑r= ≈1.78(cm)
面積為20cm2的圓半徑r= ≈2.52(cm)
關系式:r=
。玻蚓匦蝺山M對邊相等,所以它一條長與一條寬的和應是周長10cm的一半,即5cm.
若長為1cm,則寬為5-1=4(cm)
據矩形面積公式:S=1×4=4(cm2)
若長為2cm,則寬為5-2=3(cm)
面積S=2×(5-2)=6(cm2)
… …
若長為xcm,則寬為5-x(cm)
面積S=x?(5-x)=5x-x2(cm2)
從以上兩個題中可以看出,在探索變量間變化規律時,可利用以前學過的一些有關知識公式進行分析尋找,以便盡快找出之間關系,確定關系式.
Ⅲ.隨堂練習
1.購買一些鉛筆,單價0.2元/支,總價y元隨鉛筆支數x變化,指出其中的常量與變量,并寫出關系式.
2.一個三角形的底邊長5cm,高h可以任意伸縮.寫出面積S隨h變化關系式,并指出其中常量與變量.
解:1.買1支鉛筆價值1×0.2=0.2(元)
買2支鉛筆價值2×0.2=0.4(元)
……
買x支鉛筆價值x×0.2=0.2x(元)
所以y=0.2x
其中單價0.2元/支是常量,總價y元與支數x是變量.
。玻鶕切蚊娣e公式可知:
當高h為1cm時,面積S= ×5×1=2.5cm2
當高h為2cm時,面積S= ×5×2=5cm2
… …
當高為hcm,面積S= ×5×h=2.5hcm2
數學八年級上冊教案8
一、創設情景,明確目標
多媒體展示:內角三兄弟之爭
在一個直角三角形里住著三個內角,平時,它們三兄弟非常團結.可是有一天,老二突然不高興,發起脾氣來,它指著老大說:“你憑什么度數最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起來了……”“為什么?”老二很納悶.同學們,你們知道其中的道理嗎?
二、自主學習,指向目標
學習至此:請完成《學生用書》相應部分.
三、合作探究,達成目標
三角形的內角和
活動一:見教材P11“探究”.
展示點評:從探究的操作中,你能發現證明的思路嗎?圖中的直線L與△ABC的邊BC有什么關系?你能想出證明“三角形內角和的方法”嗎?證明命題的步驟是什么?證明三角形的內角和定理.
小組討論:有沒有不同的證明方法?
反思小結:證明是由題設出發,經過一步步的推理,最后推出結論正確的過程.三角形三個內角的和等于180°.
針對訓練:見《學生用書》相應部分
三角形內角和定理的應用
活動二:見教材P12例1
展示點評:題中所求的角是哪個三角形的一個內角嗎?你能想出幾種解法?
小組討論:三角形的內角和在解題時,如何靈活應用?
反思小結:當三角形中已知兩角的讀數時,可直接用內角和定理求第三個內角;當三角形中未直接給出兩內角的度數時,可根據它們之間的關系列方程解決.
針對訓練:見《學生用書》相應部分
四、總結梳理,內化目標
1.本節學習的數學知識是:三角形的內角和是180°.
2.三角形內角和定理的證明思路是什么?
3.數學思想是轉化、數形結合.
《三角形綜合應用》精講精練
1. 現有3 cm,4 cm,7 cm,9 cm長的四根木棒,任取其中三根組成一個三角形,那么可以組成的三角形的個數是( )
A.1個 B.2個 C.3個 D.4個
2. 如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依次為2,3,4,6,且相鄰兩木條的.夾角均可調整.若調整木條的夾角時不破壞此木框,則任兩螺絲之間的距離最大值是( )
A.5 B.6 C.7 D.10
3.下列五種說法:①三角形的三個內角中至少有兩個銳角;
②三角形的三個內角中至少有一個鈍角;③一個三角形中,至少有一個角不小于60°;④鈍角三角形中,任意兩個內角的和必大于90°;⑤直角三角形中兩銳角互余.其中正確的說法有________(填序號).
《11.2與三角形有關的角》同步測試
4.(1)如圖①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,∠ACD與∠B有什么關系?為什么?
(2)如圖②,在Rt△ABC中,∠C=90°,D,E分別在AC,AB上,且∠ADE=∠B,判斷△ADE的形狀.為什么?
(3)如圖③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,點C,B,E在同一直線上,∠A與∠D有什么關系?為什么?
數學八年級上冊教案9
、.教學任務分析
教學目標
知識與技能 使學生理解正比例函數的概念,會用描點法畫正比例函數圖象,掌握正比例函數的性質.
過程與能力 培養學生數學建模的能力.
情感與態度 實例引入,激發學生學習數學的興趣.
教學重點 探索正比例函數的性質.
教學難點 從實際問題情境中建立正比例函數的數學模型.
、.教學過程設計
問題及師生行為 設計意圖
一、創設問題,激發興趣
【問題1】將下列問題中的變量用函數表示出來:
(1)小明騎自行車去郊游,速度為4km/h,其行駛路程y隨時間x變化而變化;
(2)三角形的底為10cm,其面積y隨高x的變化而變化;
(3)筆記本的單價為3元,買筆記本所要的錢數y隨作業本數量x的變化而變化.
解:(1)y=4x;(2)y=5x;(3)y=3x.
教師提出問題,學生獨立思考并回答問題.
教師點評,并且提醒學生注意用x表示y. 問題引入,為新知作好鋪墊.
二、誘導參與,探究新知
思考:觀察函數關系式:
、 y=4x; ② y=5x; ③ y=3x.
這些函數有什么特點?
都是y等于一個常量與x的乘積.
教師提出問題,并引導學生觀察:
學生觀察思考并回答問題.
三、引導歸納,提煉新知
(板書)正比例函數的概念:
一般地,形如y=kx(k是常數,k≠0)的函數,叫做正比例函數,其中k叫做比例系數.
注意:x 的取值范圍是全體實數.
由教師引導,學生觀察得出結論.體現學生為主體,教師為主導的關系.
通過板書,突出本節課的重點.
四、指導應用,發展能力
1.下列函數是否是正比例函數?比例系數是多少?
(1) 是,比例系數k=8. (2) 不是.
(3) 是,比例系數k= . (4) 不是.
填空
1.若函數y=(2m2+8)xm2-8+(m+3)是正比例函數,則m的值是___-3____.
題 1請學生口答, 題2學生獨立完成,并到黑板板書,教師評價書寫規范.
在本次活動中,教師要關注:
學生能否準確地理解正比例函數的定義,注意二次項系數不能為0.
五、探究新知
例1 畫出正比例函數y=x的圖象.
解:(1)列表:
x --- -2 -1 0 1 2 ---
y --- -2 -1 0 1 2 ---
畫出函數y=x的`圖象.
(1)列表: (2)描點: (3)連線:
想一想
除了用描點法外,還有其他簡單的方法畫正比例函數圖象嗎?
根據兩點確定一條直線,我們可以經過原點與點(1,k)畫直線,即兩點法.
同理,畫出y=-x的圖象.
師生共同分析:兩個圖象的共同點:都是經過原點的直線.不同點:函數y=x的圖象從左向右呈上升狀態,即隨著x的增大y也增大,經過第一、三象限.
函數y=-x的圖象從左向右呈下降狀態,即隨x增大y反而減小,經過第二、四象限.
歸納:一般地,正比例函數y=kx(k是常數,k≠ 0)的圖象是一條經過原點的直線.
當k>0時,圖象經過一、三象限,從左向右上升,即隨x的增大y也增大;
當k<0時,圖象經過二、四象限,從左向右下降,即隨x增大y反而減小.
由于正比例函數y=kx(k是常數,k≠0)的圖象是一條直線,我們可以稱它為直線y=kx.
六、指導應用,發展能力
例2 在同一直角坐標系中畫出y=x,y=2x,y=3x的函數圖象,并比較它們的異同點.
相同點:圖象經過一、三象限,從左向右上升;
不同點:傾斜度不同, y=x,y=2x,y=3x的函數圖象離y軸越來越近.
例3 在同一直角坐標系中畫出y=-x,y=-2x,y=-3x的函數圖象,并比較它們的異同點.
相同點:圖象經過二、四象限,從左向右下降;
不同點:傾斜度不同, y=-x,y=-2x,y=-3x的函數圖象離y軸越來越近.
在y=kx中,k的絕對值越大,函數圖象越靠近y軸.
數學八年級上冊教案10
教學目標:
。1)通過觀察操作,認識軸對稱圖形的特點,掌握軸對稱圖形的概念。
(2)能準確判斷哪些事物是軸對稱圖形。
。3)能找出并畫出軸對稱圖形的對稱軸。
。4)通過實驗,培養學生的抽象思維和空間想象能力。
。5)結合教材和聯系生活實際培養學生的學習興趣和熱愛生活的情感。
教學重點:
(1)認識軸對稱圖形的特點,建立軸對稱圖形的概念;
。2)準確判斷生活中哪些事物是軸對稱圖形。
教學難點:
根據本班學生學習的實際情況,本節課教學的難點是找軸對稱圖形的對稱軸。
教學過程:
一、認識對稱物體
1、出示物體:今天秦老師給大家帶來了一些物體,這是我們學校的同學參加數學競賽獲得的獎杯。這時一架轟炸戰斗機。這是海獅頂球。
2、請同學們仔細觀察這些物體,想一想它們的外形有什么共同的特點。(可能的回答:對稱)
。ǖ糠謱W生這時并不真正理解何為對稱)
追問:對稱?你是怎樣理解對稱的呢?
。ǹ赡艿幕卮穑簝蛇吺且粯拥模
像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對稱的。(板書:對稱)像這樣對稱的物體,在我們的生活中你看到過嗎?誰來說說看?
。ǹ赡苷_的回答:蝴蝶、蜻蜓……)
(可能錯誤的回答:剪刀)
若有錯誤答案則如此處理。追問:剪刀是不是對稱的?學生產生分歧,有說是,有說不是。剪刀兩邊不是完全一樣的,所以它不對稱。但是沿著輪廓把它畫在紙上,是一個對稱的。
二、認識對稱圖形
1、這些對稱的物體,我們把它畫在紙上,就得到這樣一些平面圖形。(出示圖片)這些圖形還是對稱的嗎?(是對稱的)
同學們真聰明,一眼就能看出這些圖形都是對稱的。那么像這樣的圖形,我們就把它們叫做——(生齊說:對稱圖形)
。◣熢凇皩ΨQ”后接著板書:圖形)
2、是不是所有的圖形都是對稱的?它們又是怎樣對稱的?我們又怎樣證明它們是不是對稱圖形?這就是我們這節課要研究的問題。為了研究這些問題,老師還帶來了一些平面圖形,你們看——
(師在黑板上貼出圖形)
邊貼邊說:汽車圖形、鑰匙圖形、桃子圖形、蝴蝶圖形、青蛙圖形、豎琴圖形、香港區徽圖形。
這些圖形都是對稱的嗎?(不是)
3、你們能給它們分分類嗎?(能)誰愿意上來分一分?
你準備怎么分類?(分成兩類:一類是對稱圖形,一類是不對稱圖形)
問全班同學:你們同意嗎?(同意)
你們怎么知道這些圖形就是對稱圖形?有什么辦法來證明嗎?(對折)
好,我們用這個辦法試一下。誰愿意上來折給大家看的?自己上來,選擇一個喜歡的圖形折給大家看。
4、圖形對折后你發現了什么?誰先說?(可能的回答:對折后兩邊一樣或對折后兩邊重疊)
你們所說的兩邊一樣、兩邊重疊,也就是說對折后兩邊重合了。
(師板書:重合)(若有說出完全重合則板書:完全重合)
請將對折后的對稱圖形貼到黑板上,謝謝。
師指不對稱圖形。同學們剛才我們通過把這些對稱圖形對折,發現對折后兩邊重合了,現在再請幾位同學上來折一折不對稱圖形,看看這次又有什么發現?還是自己上來。
折后你發現了什么?(可能的回答:沒有重合、對折后兩邊不一樣)它們有沒有重合?一點點重合都沒有嗎?
。ㄓ幸稽c重合)
拿一個對稱圖形和同學折過的不對稱圖形比較。這個圖形對折后重合了,這個也重合了,那這兩種重合有什么不一樣嗎?
。ǹ赡艿幕卮穑哼@個全部重合了,這個沒有)
這些對稱的圖形對折后全部重合了,也就是完全重合了!
(師在“重合”前板書:完全)而不對稱圖形只是部分重合。
好,謝謝你們,請將圖形放這(不對稱圖形下黑板)
大家的表現非常出色,獎勵一下我們自己,來拍拍手吧!
“一——二——停!”我們的.兩只手掌現在是——
。ㄉR說:完全重合)
三、認識對稱軸,對稱軸的畫法
同學們都很聰明,課前你們都準備了彩紙、剪刀,如果請你用這些材料創作一個對稱圖形,行嗎?
1、請將你創作的對稱圖形,慢慢打開,問:你們發現了什么?
。ㄖ虚g有一條折痕)
大家把手中的對稱圖形舉起來,看看是不是每個對稱圖形中間——都有一條折痕。這些折痕的左右兩邊——(生齊說:完全重合)。
這條折痕所在的直線,有它獨有的名稱叫做“對稱軸”。
。ㄔ凇皩ΨQ圖形”前板書:軸)
像這樣的圖形,我們就把它們叫做“軸對稱圖形”。
(師手指板書,邊說邊把“對折——完全重合——軸對稱圖形”連起來)
現在大家知道了這個圖形是——軸對稱圖形。這個呢?這個呢?他們都是——軸對稱圖形。接下來請你看著自己創作的圖形說說。
誰來說說,怎樣的圖形是軸對稱圖形?
可以上來拿一個軸對稱圖形說。請學生用自己的語言說。
2、師拿一張軸對稱圖形,隨便折兩下。
這是一個軸對稱圖形嗎?是的。師隨便折兩下。
誰來說說這個軸對稱圖形的對稱軸是那條?
。ㄒ粭l都不是。)為什么?
只有對折后兩邊完全重合的折痕才是對稱軸。
請你來折出它的對稱軸。通常我們用點劃線表示對稱軸。
師示范。請你在所創作的軸對稱圖形上用點劃線表示出對稱軸。
四、平面圖形中的軸對稱圖形,及它們的對稱軸各有幾條。
1、對于軸對稱圖形,其實我們并不陌生,在我們認識的一些平面圖形中應該就有一些是軸對稱圖形。我們先回憶一下學習過的平面圖形有哪些?
。ǹ赡艿幕卮穑赫叫、長方形、平行四邊形、圓形、梯形、三角形等等)(教師板書,適當布局)
同學們說的是否正確呢?用什么辦法來證明?(對折)如果它是軸對稱圖形,那它有幾條對稱軸呢?
好,那我們就拿出課前準備的平面圖形,用對折的方法來證明,注意如果它有對稱軸請你折出來。
結論出來了嗎?現在你的判斷和剛才還是一樣的嗎?
3、問:你想匯報什么?學生匯報。教師機動回答,回答語可有:
這位同學既能給出判斷結果,又能說出判斷的理由,非常好。
看來,僅靠經驗、觀察得出的結論有時并不準確,還需要動手實驗進行驗證。
能抓住軸對稱圖形的特征進行分析,不錯!
也許一般的平行四邊形不是軸對稱圖形,但有些特殊的平行四邊形卻是比如:長方形和正方形。以此類推……
圓有無數條對稱軸。所有的圓都是軸對稱圖形。
討論平行四邊形、梯形、三角形時,我們既要考慮一般的圖形,又要考慮特殊的圖形。但是關于圓形,我們卻無需考慮這么多,正如你所說的,所有的圓都是軸對稱圖形,不存在什么特殊的情況。看來,數學學習中,具體的問題還得具體對待。
。ㄒ话闳切、一般梯形、直角梯形、一般平行四邊形不是軸對稱圖形,等腰三角形、等腰梯形、正三角形、長方形、正方形和圓都是軸對稱圖形)等腰梯形(1條),正五邊形(5條),圓(無數條)
4、用測量的方法找對稱軸。
剛才,大家都用對折的方法找出了他們的對稱軸,但是如果老師請你在黑板面上找出對稱軸呢?
大家都有一張長方形紙,假設它就是不能對折的黑板面,怎么畫出它的對稱軸?(我們可以用測量的方法,來找出對邊的中點,連結中點。用同樣的方法,我們可以畫出另一條對稱軸。
現在請同學們打開書本,畫出書上長方形的對稱軸。(小組內交流檢查)
五、練習
1、學習了什么是軸對稱圖形,現在請在你身邊的物體上找出三個軸對稱圖形。(瓷磚面、電視機柜、衣服、國旗?、凳面、桌面)
問:國旗是軸對稱圖形嗎?
產生沖突。說明:不但要觀察外形,還要觀察里面的圖案。
2、判斷國旗是否是軸對稱圖形。
3、找阿拉伯數字中的軸對稱圖形
4、領略窗花的美麗,再從中找到創作的靈感,創作軸對稱圖形。教師可出示一些指導性圖片。
選擇一些貼到黑板上,最后出示“美”字。
總結:軸對稱圖形非常美麗,因此被廣泛的運用于服裝、家具、交通、商標等方面的設計中,希望大家能夠運用今天的知識,把我們的教室、把你的家以后把我們的祖國裝扮得更漂亮。
數學八年級上冊教案11
教學目標
一、教學知識點:
1.旋轉的定義.2.旋轉的基本性質.
二、能力訓練要求:
1.通過具體實例認識旋轉,理解旋轉的基本涵義.
2.探索旋轉的基本性質,理解旋轉前后兩個圖形對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角彼此相等的性質.
三、情感與價值觀要求
1.經歷對生活中與旋轉現象有關的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關畫圖的操作技能,發展初步的審美能力,增強對圖形欣賞的意識.
2.通過學習使學生能用數學的眼光看待生活中的有關問題,進一步發展學生的數學觀.
教學重點:旋轉的基本性質.
教學難點:探索旋轉的基本性質.
教學方法:
1、遵循學生是學習的主人的原則,在為學生創造大量實例的基礎上,引導學生自主思考、交流、討論、歸納、學習。
2、采用多媒體課件輔助教學。
教學過程:
一.巧設情景問題,引入課題
日常生活中,我們經常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉動、汽車方向盤的轉動、轆轤打水的情景). (1)上面情景中的轉動現象,有什么共同特征?(2)鐘表的指針、鐘擺在轉動過程中,其形狀、大小、位置是否發生改變?汽車方向盤的轉動呢?
1.在這些轉動的現象中,它們都是繞著一個點轉動的.
2.每個物體的轉動都是向同一個方向轉動.
3.鐘表的指針、鐘擺在轉動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉動叫旋轉(circumrotate),這節課我們就來探討生活中的旋轉.
二.講授新課
在數學中,如何定義旋轉呢?在平面內,將一個圖形繞著一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉(circumrotate).這個定點稱為旋轉中心,轉動的角稱為旋轉角.注意:“將一個圖形繞一個定點沿某個方向轉動一個角度”意味著圖形上的每個點同時都按相同的方式轉動相同的角度.在物體繞著一個定點轉動時,它的形狀和大小不變.因此,旋轉具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁)答:(1)旋轉中心是O點,旋轉角是∠AOD.旋轉角還可以是∠BOE.
(2)四邊形AOBC繞O點旋轉到四邊形DOEF的位置.這時點A旋轉到點D的位置,點B旋轉到點E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉到OD的位置,指針的長短、形狀沒有變化,所以OA與OD是相等的.同樣,線段OB與OE是相等的.
(4)因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,在旋轉的過程中,圖形上的每個點同時都按相同的方向旋轉相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因為四邊形AOBC繞O點旋轉到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉得到的,經過旋轉,點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應點.從剛才大家得出的結論中,能否總結出旋轉的性質呢?
答:因為O是旋轉中心,點A與點D是對應點,點B與點E是對應點,且OA=OD,OB=OE,所以可以知道:對應點與旋轉中心所連的線段的長度是相等的.
因為點A與點D、點B與點E是對應點,且∠AOD=∠BOE,所以由此可以知道:對應點與旋轉中心的連線所成的角是互相相等的.
由此我們得到了旋轉的基本性質:經過旋轉,圖形上的每一點都繞旋轉中心沿相同方向轉動了相同的角度.任意一對對應點與旋轉中心的連線所成的角都是旋轉角,旋轉角彼此相等.對應點到旋轉中心的距離相等.
。劾1](課本68頁例1)
。蹘熒参觯萁浹菔(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉的,它旋轉一周時的'度數是360°,一周需要60分,因此每分鐘分針所轉過的度數是6°,這樣20分時,分針逆轉的角度即可求出.
解:(見課本68頁)
書上68頁做一做
三.課堂練習
課本P69隨堂練習.
1.解:旋轉5次得到,旋轉的角度分別等于60°、120°、180°、240°、300°.
四.課時小結
五.課后作業:課本P69習題3.4 1、2、3.
六.活動與探究
1.分析圖中的旋轉現象.過程:讓學生畫圖、找規律,也可讓他們通過剪切,找到旋轉規律.
結果:旋轉現象為:
整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續旋轉45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續旋轉90°、180°、270°前后的圖形共同組成的.
整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉得到的?
過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關系;或讓學生仔細觀察圖形,分析圖形,找出關系.
結果:圖中存在這樣的三角形,其中一個是另一個通過旋轉得到的.
整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續旋轉90°、180°、 270°.前后的圖形共同組成的.
整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉180°前后的圖形共同組成的.
板書設計:略
教學反思:本節課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養學生的空間想象能力。
數學八年級上冊教案12
教學目標:
1、理解運用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的綜合運用。
3、進一步培養學生綜合、分析數學問題的能力。
教學重點:
運用平方差公式分解因式。
教學難點:
高次指數的轉化,提公因式法,平方差公式的靈活運用。
教學案例:
我們數學組的觀課議課主題:
1、關注學生的合作交流
2、如何使學困生能積極參與課堂交流。
在精心備課過程中,我設計了這樣的自學提示:
1、整式乘法中的平方差公式是xxx,如何用語言描述?把上述公式反過來就得到xxxxx,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
、-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、試總結運用平方差公式因式分解的條件是什么?
4、仿照例4的`分析及旁白你能把x3y-xy因式分解嗎?
5、試總結因式分解的步驟是什么?
師巡回指導,生自主探究后交流合作。
生交流熱情很高,但把全部問題分析完已用了30分鐘。
生展示自學成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2還能繼續分解為a+b)(a-b)
師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止!
反思:這節課我備課比較認真,自學提示的設計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的'條件,我設計了問題2,為讓學生能更容易總結因式分解的步驟,我又設計了問題4,自認為,本節課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結果卻出乎我的意料,本節課沒有按計劃完成教學任務,學生練習很少,作業有很大一部分同學不能獨立完成,反思這節課主要有以下幾個問題:
(1)我在備課時,過高估計了學生的能力,問題2中的③、④、⑤多數學生剛預習后不能熟練解答,導致在小組交流時,多數學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2)教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設計時可寫一些簡單的,像④、⑤可到練習時再出現,發現問題后再強調、歸納,效果也可能會更好。
我及時調整了自學提示的內容,在另一個班也上了這節課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結論,課堂氣氛非;钴S,練習量大,準確率高,但隨之我又發現我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試!鄙珠_始緊張地練習……下課后,無意間發現竟還有好幾個同學課后題沒做。原因是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……?磥,以后上課不能單聽學生的齊答,要發揮組長的職責,注重過關落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。
確實,“學海無涯,教海無邊”。我們備課再認真,預設再周全,面對不同的學生,不同的學情,仍然會產生新的問題,“沒有,只有更好!”我會一直探索、努力,不斷完善教學設計,更新教育觀念,直到永遠……
數學八年級上冊教案13
教學目標
。ㄒ唬┙虒W知識點
1.經歷探索積的乘方的運算法則的過程,進一步體會冪的意義。
2.理解積的乘方運算法則,能解決一些實際問題。
。ǘ┠芰τ柧氁
1.在探究積的乘方的運算法則的過程中,發展推理能力和有條理的表達能力。
2.學習積的乘方的運算法則,提高解決問題的能力。
。ㄈ┣楦信c價值觀要求
在發展推理能力和有條理的語言、符號表達能力的同時,進一步體會學習數學的興趣,提高學習數學的信心,感受數學的簡潔美。
教學重點
積的乘方運算法則及其應用。
教學難點
冪的運算法則的靈活運用。
教學方法
自學─引導相結合的方法。
同底數冪的乘法、冪的乘方、積的乘方成一個體系,研究方法類同,有前兩節課做基礎,本節課可放手讓學生自學,教師引導學生總結,從而讓學生真正理解冪的`運算方法,能解決一些實際問題。
教具準備
投影片.
教學過程
Ⅰ.提出問題,創設情境
[師]還是就上節課開課提出的問題:若已知一個正方體的棱長為1.1×103cm,你能計算出它的體積是多少嗎?
[生]它的體積應是V=(1.1×103)3cm3。
[師]這個結果是冪的乘方形式嗎?
[生]不是,底數是1.1和103的乘積,雖然103是冪,但總體來看,我認為應是積的乘方才有道理。
[師]你分析得很有道理,積的乘方如何運算呢?能不能找到一個運算法則?有前兩節課的探究經驗,老師想請同學們自己探索,發現其中的奧秒。
Ⅱ.導入新課
老師列出自學提綱,引導學生自主探究、討論、嘗試、歸納。
出示投影片
1.填空,看看運算過程用到哪些運算律,從運算結果看能發現什么規律?
(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()
。2)(ab)3=______=_______=a()b()
(3)(ab)n=______=______=a()b()(n是正整數)
2.把你發現的規律用文字語言表述,再用符號語言表達。
3.解決前面提到的正方體體積計算問題。
4.積的乘方的運算法則能否進行逆運算呢?請驗證你的想法。
5.完成課本P170例3。
學生探究的經過:
1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結合律;第③步是用同底數冪的乘法法則。同樣的方法可以算出(2)、(3)題。
數學八年級上冊教案14
一、教學目標
知識與技能
1、了解立方根的概念,初步學會用根號表示一個數的立方根.
2、了解開立方與立方互為逆運算,會用立方運算求某些數的立方根.
過程與方法
1讓學生體會一個數的立方根的惟一性.
2培養學生用類比的思想求立方根的能力,體會立方與開立方運算的互逆性,滲透數學的轉化思想。
情感態度與價值觀
通過立方根符號的引入體會數學的簡潔美。
二、重點難點
重點
立方根的概念和求法。
難點
立方根與平方根的區別,立方根的`求法
三、學情分析
前面已經學過了平方根的知識,由于平方根與立方根的學習有很多相似之處,所以在教學設計上,主要還是采取類比的思想,在全面回顧平方根的基礎上,再來引導學生進行立方根知識的學習,讓學生感覺到其實立方根知識并不難,可以與平方根知識對比著學,這樣可以克服學生學習新知識的陌生心理。在學習方法上,提倡讓學生在反思中學習,在概念的得出,歸納性質,解題之后都要進行適當的反思,在反思中看待與理解新知識和新問題,會更理性和全面,會有更大的進步。
四、教學過程設計
教學環節問題設計師生活動備注
情境創設問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長應該是多少?
設這種包裝箱的邊長為xm,則=27這就是求一個數,使它的立方等于27.
因為=27,所以x=3.即這種包裝箱的邊長應為3m
歸納:
立方根的概念:
創設問題情境,引起學生學習的興趣,經小組討論后引出概念。
通過具體問題得出立方根的概念
探究一:
根據立方根的意義填空,看看正數、0、負數的立方根各有什么特點?
因為(),所以0.125的立方根是()
因為(),所以-8的立方根是()
因為(),所以-0.125的立方根是()
因為(),所以0的立方根是()
一個正數有一個正的立方根
0有一個立方根,是它本身
一個負數有一個負的立方根
任何數都有唯一的立方根
【總結歸納】
一個數的立方根,記作,讀作:“三次根號”,其中叫被開方數,3叫根指數,不能省略,若省略表示平方。.
探究二:
因為所以=
因為,所以=總結:
利用開立方和立方互為逆運算關系,求一個數的立方根,就可以利用這種互逆關系,檢驗其正確性,求負數的立方根,可以先求出這個負數的絕對值的立方根,再取其相反數,即。
數學八年級上冊教案15
教學內容
本節課主要介紹全等三角形的概念和性質.
教學目標
1.知識與技能
領會全等三角形對應邊和對應角相等的有關概念.
2.過程與方法
經歷探索全等三角形性質的過程,能在全等三角形中正確找出對應邊、對應角.
3.情感、態度與價值觀
培養觀察、操作、分析能力,體會全等三角形的應用價值.
重、難點與關鍵
1.重點:會確定全等三角形的對應元素.
2.難點:掌握找對應邊、對應角的方法.
3.關鍵:找對應邊、對應角有下面兩種方法:(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;(2)對應邊所對的角是對應角,?兩條對應邊所夾的角是對應角.教具準備
四張大小一樣的紙片、直尺、剪刀.
教學方法
采用“直觀──感悟”的教學方法,讓學生自己舉出形狀、大小相同的實例,加深認識.教學過程
一、動手操作,導入課題
1.先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的圖形有何特點?
2.重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點?
【學生活動】動手操作、用腦思考、與同伴討論,得出結論.
【教師活動】指導學生用剪刀剪出重疊的兩個多邊形和三角形.
學生在操作過程中,教師要讓學生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細心.
【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的`兩個圖形叫做全等形,用“≌”表示.
概念:能夠完全重合的兩個三角形叫做全等三角形.
【教師活動】在紙版上任意剪下一個三角形,要求學生手拿一個三角形,做如下運動:平移、翻折、旋轉,觀察其運動前后的三角形會全等嗎?
【學生活動】動手操作,實踐感知,得出結論:兩個三角形全等.
【教師活動】要求學生用字母表示出每個剪下的三角形,同時互相指出每個三角形的頂點、三個角、三條邊、每條邊的邊角、每個角的對邊.
【學生活動】把兩個三角形按上述要求標上字母,并任意放置,與同桌交流:(1)何時能完全重在一起?(2)此時它們的頂點、邊、角有何特點?
【交流討論】通過同桌交流,實驗得出下面結論:
1.任意放置時,并不一定完全重合,?只有當把相同的角旋轉到一起時才能完全重合.
2.這時它們的三個頂點、三條邊和三個內角分別重合了.
3.完全重合說明三條邊對應相等,三個內角對應相等,?對應頂點在相對應的位置.
【數學八年級上冊教案】相關文章:
數學八年級上冊教案03-02
初中數學八年級上冊教案02-06
八年級上冊數學教案01-13
八年級數學上冊教案02-27
八年級上冊數學優秀教案01-23
數學八年級上冊教案15篇03-02
數學八年級上冊教案(15篇)03-02
數學上冊教案01-15
初中數學八年級上冊教案精選5篇06-05
人教版八年級數學上冊教案01-26