初一數學教案

時間:2023-01-10 14:46:17 數學教案 我要投稿
  • 相關推薦

初一數學教案15篇

  作為一名優秀的教育工作者,時常需要編寫教案,借助教案可以提高教學質量,收到預期的教學效果。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的初一數學教案,希望對大家有所幫助。

初一數學教案15篇

初一數學教案1

  多邊形及其內角和

  知識點一:多邊形的概念

 、哦噙呅味x:在平面內,由一些線段首位順次相接組成的圖形叫做________.

  如果一個多邊形由n條線段組成,那么這個多邊形叫做____________.(一個多邊形由幾條線段組成,就叫做幾邊形.)

  多邊形的表示:用表示它的各頂點的大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序.如五邊形ABCDE.

  ⑵多邊形的邊、頂點、內角和外角.

  多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________.

 、嵌噙呅蔚膶蔷

  連接多邊形的不相鄰的兩個頂點的線段,叫做___________________.畫一個五邊形ABCDE,并畫出所有的對角線.知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是______多邊形.

  知識點二:正多邊形

  各個角都相等,各條邊都相等的多邊形叫做_____________.

  探究多邊形的對角線條數

  知識點三:多邊形的內角和公式推導

  1、我們知道三角形的內角和為__________.

  2、我們還知道,正方形的四個角都等于____°,那么它的內角和為_____°,同樣長方形的內角和也是______°.

  3、正方形和長方形都是特殊的四邊形,其內角和為360度,那么一般的四邊形的內角和為多少呢?

  4、畫一個任意的四邊形,用量角器量出它的四個內角,計算它們的和,與同伴交流你的結果.從中你得到什么結論?

  探究1:任意畫一個四邊形,量出它的4個內角,計算它們的和.再畫幾個四邊形,?量一量、算一算.你能得出什么結論?能否利用三角形內角和等于180?°得出這個結論?結論:。

  探究2:從上面的問題,你能想出五邊形和六邊形的`內角和各是多少嗎?觀察圖3,?請填空:

 。1)從五邊形的一個頂點出發,可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內角和等于180°×______.

 。2)從六邊形的一個頂點出發,可以引_____條對角線,

  它們將六邊形分為_____個三角形,六邊形的內角和等于180°×______.探究3:一般地,怎樣求n邊形的內角和呢?請填空:

  從n邊形的一個頂點出發,可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內角和等于180°×______.

  綜上所述,你能得到多邊形內角和公式嗎?設多邊形的邊數為n,則

  n邊形的內角和等于______________.

  想一想:要得到多邊形的內角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形.除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內角和公式嗎?

  知識點四:多邊形的外角和

  探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和.六邊形的外角和等于多少?

  問題:如果將六邊形換為n邊形(n是大于等于3的整數),結果還相同嗎?多邊形的外角和定理:.理解與運用

  例1如果一個四邊形的一組對角互補,那么另一組對角有什么關系?已知:四邊形ABCD的∠A+∠C=180°.求:∠B與∠D的關系.

  自我檢測:

 。ㄒ唬⑴袛囝}.

  1.當多邊形邊數增加時,它的內角和也隨著增加.()

  2.當多邊形邊數增加時.它的外角和也隨著增加.()

  3.三角形的外角和與一多邊形的外角和相等.()

  4.從n邊形一個頂點出發,可以引出(n一2)條對角線,得到(n一2)個三角形.()

  5.四邊形的四個內角至少有一個角不小于直角.()

  (二)、填空題.

  1.一個多邊形的每一個外角都等于30°,則這個多邊形為

  2.一個多邊形的每個內角都等于135°,則這個多邊形為

  3.內角和等于外角和的多邊形是邊形.

  4.內角和為1440°的多邊形是

  5.若多邊形內角和等于外角和的3倍,則這個多邊形是邊形.

  6.五邊形的對角線有

  7.一個多邊形的內角和為4320°,則它的邊數為

  8.多邊形每個內角都相等,內角和為720°,則它的每一個外角為

  9.四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠.

  10.四邊形的四個內角中,直角最多有個,鈍角最多有銳角最

  (三)解答題

  1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?

  2、在每個內角都相等的多邊形中,若一個外角是它相鄰內角的則這個多邊形是幾邊形?

  3、若一個多邊形的內角和與外角和的比為7:2,求這個多邊形的邊數。

  4、一個多邊形的每一個內角都等于其相等外角的

  5.一個多邊形少一個內角的度數和為2300°.

  (1)求它的邊數;(2)求少的那個內角的度數.

初一數學教案2

  【教學目標】

  知識與技能

  了解并掌握數據收集的基本方法。

  過程與方法

  在調查的過程中,要有認真的態度,積極參與。

  情感、態度與價值觀

  體會統計調查在解決實際問題中的作用,逐步養成用數據說話的良好習慣。

  【教學重難點】

  重點:掌握統計調查的基本方法。

  難點:能根據實際情況合理地選擇調查方法。

  【教學過程】

  一、講授新課

  像前面提到的收集數據的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。

  調查、試驗如采用普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查(samplingsurvey),即從被考察的全體對象中抽出一部分對象進行考察的調查方式。

  在一個統計問題中,我們把所要考察對象的全體叫做總體(population),其中的每一個考察對象叫做個體(individual),從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數目叫做樣本容量(samplesize)。

  例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。

  為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。

  上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣(simplerandomsampling)。

  師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。

  學生小組合作、討論,學生代表展示結果。

  教師指導、評論。

  師:除了問卷調查外,我們還有哪些方法收集到數據呢?

  學生小組討論、交流,學生代表回答。

  師:收集數據的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統計的數據,你認為選擇何種方法去收集比較合適?

  (1)你班中的同學是如何安排周末時間的?

  (2)我國瀕臨滅絕的植物數量;

  (3)某種玉米種子的發芽率;

  (4)學校門口十字路口每天7:00~7:10時的車流量。

  學生討論,并舉手回答。

  師:采用何種方法一定要結合實際問題來定。在解決問題(1)的過程中,不但要同學們動手調查,并且對全班所有學生都要調查,像這樣對全體對象進行的調查叫做全面調查(普查)。同學們還知道哪些數據的收集需要全面調查嗎?

  學生討論,并回答。

  生:如人口普查、本班同學的出生年月、某班學生50米跑成績等。

  師:很好!下列問題也適合采用普查方式來收集數據嗎?

  (1)了解某批次炮彈的殺傷半徑;

  (2)某一天全國牛肉的平均價格;

  (3)一批罐頭產品的質量檢查;

  (4)對某條河的河水的污染情況的調查。

  學生討論、分析,并舉手回答。

  師:普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受到客觀條件(如人力、財力等)的`限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。

  二、例題講解

  【例】(1)電視臺準備在某市調查一電視節目的收視率,需要對所有看電視的人進行全面調查嗎?對一所中學學生的調查結果能否作為該節目的收視率?

  (2)對本年級同學是否喜歡某電視節目調查的結果,能代表學校全體同學的意見嗎?如果不適用,應如何改進調查方法?

  解:(1)電視臺不可能對每個看電視的人進行全面調查。對這?所中學學生的調查結果不能作為該節目的收視率,因為調查對象只有中學生,缺乏代表性;

  (2)對本年級同學是否喜歡某電視節目的調查結果不能代表

  《6.2普查與抽樣調查》課時練習

  2、下列事件中最適合使用普查方式收集數據的是()

  A、為制作校服,了解某班同學的身高情況

  B、了解全市初三學生的視力情況

  C、了解一種節能燈的使用壽命

  D、了解我省農民的年人均收入情況

  答案:A

  解析:解答:A、人數不多,適合使用普查方式,所以A正確;

  B、人數較多,結果的實際意義不大,因而不適用普查方式,所以B錯誤;

  C、是具有破壞性的調查,因而不適用普查方式,所以C錯誤;

  D、人數較多,結果的實際意義不大,因而不適用普查方式,所以D錯誤。

  故選:A。

  分析:由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似。此題考查了抽樣調查和全面調查,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大時,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查選用普查。

  《6.2普查與抽樣調查》基礎鞏固

  1、(知識點1)要調查某校九年級550名學生周日的睡眠時間,下列調查對象選取最合適的是()

  A、選取該校一個班級的學生

  B、選取該校50名男生

  C、選取該校50名女生

  D、隨機選取該校50名九年級學生

  2、(題型二)下列調查適合用抽樣調查的是()

  A、了解義烏電視臺“同年哥講新聞”欄目的收視率

  B、了解禽流感H7N9確診病人同機乘客的健康狀況

  C、了解某班每個學生家庭電腦的數量

  D、“神七”載人飛船發射前對重要零部件的檢查

  3、(題型三)為了了解某市八年級男生的身高,有關部門準備對200名八年級男生的身高做調查,以下調查方案中比較合理的是()

  A、查閱外地200名八年級男生的身高統計資料

  B、測量該市一所中學200名八年級男生的身高

  C、測量該市兩所農村中學各100名八年級男生的身高

  D、在該市市區任選兩所中學,農村任選兩所中學,每所中學用抽簽的方法分別選出50名八年級男生,然后測量他們的身高

初一數學教案3

  一、 學情分析:

  在此之前,本班學生已有探索有理數加法法則的經驗,多數學生能在教師指導下探索問題。由于學生已了解利用數軸表示加法運算過程,不太熟悉水位變化,故改為用數軸表示乘法運算過程。

  二、 課前準備

  把學生按組間同質、組內異質分為10個小組,以便組內合作學習、組間競爭學習,形成良好的學習氣氛。

  三、 教學目標

  1、 知識與技能目標

  掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。

  2、 能力與過程目標

  經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。

  3、 情感與態度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  四、 教學重點、難點

  重點:運用有理數乘法法則正確進行計算。

  難點:有理數乘法法則的探索過程,符號法則及對法則的理解。

  五、 教學過程

  1、 創設問題情景,激發學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?

  學生:……

  教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題(教師板書課題)

  2、 小組探索、歸納法則

  (1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規定向東的方向為正方向,向西的'方向為負方向。

  a. 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  2 ×3=

  b. -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  -2 ×3=

  c. 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

  2 ×(-3)=

  d. (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

 。-2) ×(-3)=

  e.被乘數是零或乘數是零,結果是人仍在原處。

 。2)學生歸納法則

  a.符號:在上述4個式子中,我們只看符號,有什么規律?

 。+)×(+)= 同號得

 。-)×(+)= 異號得

 。+)×(-)= 異號得

  (-)×(-)= 同號得

  b.積的絕對值等于 。

  c.任何數與零相乘,積仍為 。

  (3)師生共同用文字敘述有理數乘法法則。

  3、 運用法則計算,鞏固法則。

  (1)教師按課本P75 例1板書,要求學生述說每一步理由。

  (2)引導學生觀察、分析例1中(3)(4)小題兩因數的關系,得出兩個有理數互為倒數,它們的積為 。

 。3)學生做 P76 練習1(1)(3),教師評析。

  (4)教師引導學生做P75 例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。多個因數相乘,積的符號由 決定,當負因數個數有 ,積為 ; 當負因數個數有 ,積為 ;只要有一個因數為零,積就為 。

  4、 討論對比,使學生知識系統化。


有理數乘法有理數加法
同號得正取相同的符號
把絕對值相乘
(-2)×(-3)=6
把絕對值相加
(-2)+(-3)=-5
異號得負取絕對值大的加數的符號
把絕對值相乘
(-2)×3= -6
(-2)+3=1
用較大的絕對值減小的絕對值
任何數與零得零得任何數

  5、 分層作業,鞏固提高。

初一數學教案4

  教學目標

  1.使學生正確理解數軸的意義,掌握數軸的三要素;

  2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;

  3.使學生初步理解數形結合的思想方法.

  教學重點和難點

  重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.

  難點:正確理解有理數與數軸上點的對應關系.

  課堂教學過程設計

  一、從學生原有認知結構提出問題

  1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

  2.用“射線”能不能表示有理數?為什么?

  3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

  待學生回答后,教師指出,這就是我們本節課所要學習的內容——數軸.

  二、講授新課

  讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

  與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

  1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

  2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

  3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

  提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

  在此基礎上,給出數軸的定義,即規定了原點、正方向和單位長度的直線叫做數軸.

  進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的'正方向改變呢?

  通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.

  三、運用舉例變式練習

  例1畫一個數軸,并在數軸上畫出表示下列各數的點:

  例2指出數軸上A,B,C,D,E各點分別表示什么數.

  課堂練習

  示出來.

  2.說出下面數軸上A,B,C,D,O,M各點表示什么數?

  最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.

  四、小結

  指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

  本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.

  五、作業

  1.在下面數軸上:

  (1)分別指出表示-2,3,-4,0,1各數的點.

  (2)A,H,D,E,O各點分別表示什么數?

  2.在下面數軸上,A,B,C,D各點分別表示什么數?

  3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一數學教案5

  教學目標

  使學生進一步理解立方根的概念,并能熟練地進行求一個數的立方根的運算;

  能用有理數估計一個無理數的大致范圍,使學生形成估算的意識,培養學生的估算能力;

  經歷運用計算器探求數學規律的過程,發展合情推理能力。

  教學難點

  用有理數估計一個無理的大致范圍。

  知識重點

  用有理數估計一個無理的大致范圍。

  對于計算器的使用,在教學中采用學生自己閱讀計算器的說明書、自己操作練習來掌握用計算器進行開立方運算的方法,并讓學生互相交流,讓學生親身體會到利用計算器不僅能給運算帶來很大的方便,也給探求數量間的關系與變化帶來方便。在教學過程中,教師要關注學生能否通過閱讀,掌握用計算器進行開立方運算的簡單操作;能否利用計算器探究數量間的關系,從而尋找出數量的'變化關系。

  使用計算器進行復雜運算,可以使學生學習的重點更好地集中到理解數學的本質上來,而估算也是一種具有實際應用價值的運算能力,在本節課的課堂教學中綜合運用筆算、計算器和估算等培養學生的運算能力。

初一數學教案6

  【教學內容】

  第二章 2.1 正數與負數 2.2 數軸

  【教學目標】

  1、會判斷一個數是正數還是負數,理解負數的意義。

  2、會把已知數在數軸上表示,能說出已知點所表示的數。

  3、了解數軸的原點、正方向、單位長度,能畫出數軸。

  4、會比較數軸上數的大小。

  【知識講解】

  一、本講主要學習內容

  1、負數的意義及表示 2、零的位置和地位

  3、有理數的分類 4、數軸概念及三要素

  5、數軸上數與點的對應關系 6、數軸上數的比較大小

  其中,負數的概念,數軸的概念及其三要素以及數軸上數的比較大小是重點。負數的意義是難點。

  下面概述一下這六點的主要內容

  1、負數的意義及表示

  把大于0的'數叫正數如5,3,+3等。在正數前加上“-”號的數叫做負數如-5,-3,- 等。負數是表示相反意義的量,如:低于海平面-155米表示為-155m,虧損50元表示-50元。

  2、零的位置和地位

  零既不是正數,也不是負數,但它是自然數。它可以表示沒有,也可以在數軸上分隔正數和分數,甚至可以表示始點,表示缺位,這將在下面詳細介紹。

  3、有理數的分類

  正整數、零、負整數統稱為整數,正分數、負分數統稱為分數,整數和分數統稱為有理數。

  正整數

  整數 零 正有理數

  有理數 負整數 或 有理數 零

  分數 正分數 負有理數

  負分數

初一數學教案7

  教學目標1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;

  2,能區分兩種不同意義的量,會用符號表示正數和負數;

  3,體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。

  教學難點正確區分兩種不同意義的量。

  知識重點兩種相反意義的量

  教學過程(師生活動)設計理念

  設置情境

  引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生

  活中僅有這些“以前學過的數”夠用了嗎?下面的例子

  僅供參考。

  師:今天我們已經是七年級的學生了,我是你們的數學老師。下面我先向你們做一下自我介紹,我的名字是——,身高1。73米,體重58。5千克,今年40歲。我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…

  問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?

  學生活動:思考,交流

  師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數)。

  問題2:在生活中,僅有整數和分數夠用了嗎?

  請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。

 。ㄒ部梢猿鍪練庀箢A報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)

  學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“—”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的'量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴

  密性,但對于學生來說,更多

  地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興

  趣,所以創設如下的問題情境,以盡量貼近學生的實際。

  這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。

  以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。

  分析問題

  探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?

  這些問題都必須要求學生理解。

  教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流。

  這階段主要是讓學生學會正數和負數的表示。

  強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量。這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。

  舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維。

  問題4:請同學們舉出用正數和負數表示的例子。

  問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明。

  能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性

  課堂練習教科書第5頁練習

  小結與作業

  課堂小結圍繞下面兩點,以師生共同交流的方式進行:

  1,0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;

  2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“—”。

  本課作業教科書第7頁習題1。1第1,2,4,5(第3題作為下節課的思考題。

  作業可設必做題和選做題,體現要求的層次性,以滿足不同學生的需要

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  密切聯系生活實際,創設學習情境。本課是有理數的第一節課時。引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的

  負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子

  或圖片中出現的負數就是讓學生去感受和體驗這一點。使學生接受生活生產實際中確實

  存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例

  子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了。

  這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,

  體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見

  的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。

初一數學教案8

  學習目標

  1.理解平行線的意義兩條直線的兩種位置關系;

  2.理解并掌握平行公理及其推論的內容;

  3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;

  學習重點

  探索和掌握平行公理及其推論.

  學習難點

  對平行線本質屬性的理解,用幾何語言描述圖形的性質

  一、學習過程:預習提問

  兩條直線相交有幾個交點?

  平面內兩條直線的位置關系除相交外,還有哪些呢?

  (一)畫平行線

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"畫"。

  3、請你根據此方法練習畫平行線:

  已知:直線a,點B,點C.

  (1)過點B畫直線a的平行線,能畫幾條?

  (2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

 。ǘ┢叫泄砑巴普

  1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

 、谶^點C畫直線a的'平行線,能畫 條;

  ③你畫的直線有什么位置關系? 。

 、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測:

  (一)選擇題:

  1、下列推理正確的是 ( )

  A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

  C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

  2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )

  A.0個 B.1個 C.2個 D.3個

 。ǘ┨羁疹}:

  1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。

  2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:

  (1)L1與L2 沒有公共點,則 L1與L2 ;

 。2)L1與L2有且只有一個公共點,則L1與L2 ;

 。3)L1與L2有兩個公共點,則L1與L2 。

  3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

  4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。

  三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

初一數學教案9

  教學目標 知識與技能

  從實際生活中感受有序數對的意義,并會確定平面內物體的位置

  過程與方法 通過有序數對確定位置,讓學生感受二維空間觀,發展符號感及抽象思維能力,讓學生體會 具體-抽象-具體的數學學習過程。

  情感態度

  與價值觀 培養學生的合作交流意識和探索精神,創造性思維意識。體驗數學來源于生活及應用于生活的意識,更好的激發學習興趣

  重點 有序數對的概念及平面內確定點的方法

  難點 對有序數對中的有序的理解,利用有序數對表示平面內的點

  教學方法 以通俗、活潑的素材引入本節課內容;本節采用情景建構教學法

  一 教學流程

  (一)創設情境、導入新課

  [引例1]小明買了一張8排6號的電影票,怎樣才能既快又準地找到座位呢?

  [引例2]規定豎為列,橫為排,如果我的朋友在第3列,你能知道他(她)是誰嗎?

  如果說我的.朋友在第3列,第2排,那么你知道他(她)是誰嗎?

  歸納8排6座、第3列,第2排共同點:用兩個數表示位置。

  約定:影院座位,排數在前,座數在后;教室座位列數在前,排數在后。則上述位置可簡記為(8,6),(3,2)。

  介紹:像(8,6)、(3,2)這種用括號括起來的一對數我們把它叫做數對。

  追問:12排10座怎么表示?教室中(6,3)表示什么?(3,6)呢?它們意義相同嗎?

  可以發現,有順序的兩個數a與b組成的數對,如果約定了前面的數表示列數,后面的數表示排數,那么a與b組成的數對就表示一個確定的位置。

  引入課題有序數對

  (二)合作交流、探究學習

  由上述問題直接引出概念

  有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記作(a,b)。

  請思考:我們為什么要學習有序數對,有序數對都有哪些用途?

  [探究1]請學生結合實際的教室座位 若位置記法為(列數,排數)

  (1)請問(5,4)和(4,5)表示的是哪個同學的座位?

  (2)游戲:教師說出一組數對相應的學生立即站起來。

  (3)思考:(3,4)和(4,3)指的是不是同一位置?

  [討論]利用有序數對,能夠準確地表示一個位置,生活中利用有序數對表示位置的情況很常見,如人們常用經緯度來表示地球上的地點等。(展示課件)

  (三)應用遷移、鞏固提高

  小明是朝陽實驗學校剛入學的初一新生,他為了盡快熟悉學校,請高年級同學為他畫了學校的平面示意圖。如果用(2,4)表示圖上校門的位置,那么花壇圖書館、體育館、教學樓的位置分別可以表示成什么?(課件展示地圖)

  解:花壇(4,6),圖書館(5,0),體育館(9,6),教學樓(10,3)

  (四)回顧反思、拓展升華

  知識點:有序數對

  有順序的兩個數a與b組成的數對叫做有序數對,記作(a,b)。

  注意點:(a,b)與(b,a)表示的是兩個不同的位置。

  主要方法:利用有序數對可以確定平面內點的位置,如根據數對畫圖形。反之,也可點的位置轉化為有序數對,如經緯網的使用。有序數對與點的位置實現了簡單的數形結合。

  (五)[拓展應用]

  小王初到某個公司,你有什么辦法讓他比較容易地找到圖上的幾處場所。

  (六)布置作業

  自由設計 二選一

  1、 在方格紙上設計一個用有序數對描述的圖形。

  2、設計一個游戲,如解密游戲、迷宮游戲等。

  教學反思

  七年級學生的好奇心較重,學習主動性不夠,主要是靠自己的興趣而學習。因此,我從學生的特點出發,明確了以學生為中心,利用適合學生年齡特點的方式來引導教學的各個環節;本節課采用多媒體輔助教學,一方面能生動清楚的反映圖形,增加課堂的容量,同時有利于突出重點, 增強教學條理性,形象性,更好的提高課堂效率.

初一數學教案10

  學習目標:

  1、從實際生活中感受有序數對的意義,并會確定平面內物體的位置。

  2、通過有序數對確定位置,讓學生感受二維空間觀,發展符號感及抽象思維能力,讓學生體會具體-抽象-具體的數學學習過程。

  3、培養學生的合作交流意識和探索精神,創造性思維意識。體驗數學來源于生活及應用于生活的意識,更好的激發學習興趣。

  學習重點:理解有序數對的概念,用有序數對來表示位置。

  學習難點:理解有序數對是有序的并用它解決實際問題,

  學習過程:

  一、 學前準備

  預習疑難: 。

  二、 探索與思考

  1、 觀察思考:觀察下圖,什么時候氣溫最低?什么時候氣溫最高?你是如何發現的?

  2、想一想:你看過電影嗎?在電影院內,確定一個座位一般需要幾個數據,為什么?

  (1)如何找到6排3號這個座位呢?

  (2)在電影票上6排3號與3排6號有什么不同?

  (3)如果將6排3號簡記作(6,3),那么3排6號如何表示?

  (4)(5,6)表示什么含義?(6,5)呢?

  3、結論:①可用排數和列數兩個不同的數來確定位置;

  ②排數和列數的先后順序對位置有影響。

  4、概念:

  有序數對:用含有 的詞表示一個 位置,其中各個數表示不同的含義,我們把這種 兩個數a與b組成的數對,叫做有序數對,記作(a,b)。

  三、 理解與運用

  (一)用有序數對來表示位置的情況是很常見的.如人們常用經緯度來表示地球上的地點.你有沒有見過用其他的方式來表示位置的?

  (二)應用

  例1 如圖,點A表示3街與5大道的十字路口,點B表示5街與3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一條路徑,那么你能用同樣的方法寫出由A到B的其他幾條路徑嗎?

  分析:圖中確定點用前一個數表示大街,后一個數表示大道。

  解:其他的路徑可以是:

  (3,5)(4,5)(4,4)(5,4)(5,3);

  (3,5)( ,5)(4,4)( , )(5,3);

  (3,5)( , )( , )( , )(5,3);

  四、學習體會:

  1、 本節課你有哪些收獲?你還有哪些疑惑?

  2、 預習時的疑難解決了嗎?

  五、自我檢測

  1、小游戲:

  怪獸吃豆豆是一種計算機游戲,圖中的標志表示怪獸先后經過的幾個位置. 如果用(1,2)表示怪獸按圖中箭頭所指路線經過的第3個位置. 那么你能用同樣的方表示出圖中怪獸經過的其他幾個位置嗎?

  2、如圖,馬所處的位置為(2,3).

  (1) 你能表示出象的位置嗎?

  (2) 寫出馬的下一步可以到達的位置。

  3、右圖是國際象棋的棋盤,E2在什么位置?又如何描述A、B、C的位置?

  4、有趣玩一玩:

  中國象棋中的馬頗有騎士風度,自古有馬踏八方之說,如圖六(1),按中國象棋中馬的行棋規則,圖中的馬下一步有A、B、C、D、E、F、G、H八種不同選擇,它的走法就象一步從日字形長方形的對角線的一個端點到另一個端點,不能多也不能少。

  要將圖六(2)中的馬走到指定的位置P處,即從(四,6)走到(六,4),現提供一種走法:(四,6)(六,5)(四,4)(五,2)(六,4)

  (1) 下面提供另一走法,請填上所缺的一步:(四,6)(五,8)(七,7)___(六,4)

  (2)請你再給出另一種走法(要與前面的兩種走法不完全相同即可,步數不限),你的走法是:

  六、方法歸類

  常見的確定平面上的點位置常用的方法

  (1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。

  (2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。

  如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。

  1、如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:

  (1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么

  數據?

  (2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?

  (3)要確定每艘敵艦的位置,各需要幾個數據?

  2、如圖是某城市市區的一部分示意圖,對市政府來說:

  (1) 北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?

  (2) 火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?

  課題:6.1.2平面直角坐標系(第一課時) 課型:新授

  學習目標:1.理解平面直角坐標系,以及橫軸、縱軸、原點、坐標等的概念.

  2.認識并能畫出平面直角坐標系.

  3.能在給定直角坐標系中,由點的位置確定點的坐標,由點的坐標確定點的位置

  學習重點:根據點的坐標在直角坐標系中描出點的位置。

  學習難點:探索特殊的點與坐標之間的關系。

  學具準備:坐標紙,三角板

  學習過程:

  一、學前準備

  1、預習疑難: 。

  2、填空:①規定了 、 、 的直線叫做數軸。

 、跀递S上原點及原點右邊的點表示的數是 ;原點左邊的點表示的數是 。

  ③畫數軸時,一般規定向 (或向 )為正方向。

  二、探索與思考

  (一)平面直角坐標系

  1、觀察:在數軸上,點A的坐標為 ,點B的坐標為 。

  即:數軸上的點可以用一個 來表示,這個數叫做這個點的 。

  反過來,知道數軸上的一個點的坐標,這個點在數軸上的位置也就確定了。

  2、思考:能不能有一種辦法來確定平面內的點的位置呢?

  3、平面直角坐標系概念:

  平面內畫兩條互相 、原點 的數軸,組成平面直角坐標系.

  水平的數軸稱為 或 ,習慣上取向 為正方向;

  豎直的數軸為 或 ,取向 為正方向;

  兩個坐標軸的交點為平面直角坐標系的 。

  4、點的坐標:

  我們用一對 表示平面上的點,這對數叫 。表示方法為(a,b).a是點對應 上的數值,b是點在 上對應的'數值。

  (二)如何在平面直角坐標系中表示一個點

  1、以A(2,3)為例,表示方法為:

  A點在x軸上的坐標為 ,A點在y軸上的坐標為 ,

  A點在平面直角坐標系中的坐標為(2,3),記作:A(2,3)

  2、方法歸納:由點A分別向X軸和 作垂線。

  3、強調:X軸上的坐標寫在前面。

  4、活動:你能說出點B、C、D的坐標嗎?

  注意:橫坐標和縱坐標不要寫反。

  5、思考歸納:原點O的坐標是( , ),

  x軸上的點縱坐標都是 , y軸上的橫坐標都是 。

  橫軸上的點坐標為(x,0) ,縱軸上的點坐標為(0,y)

  (三)象限:

  1、 建立平面直角坐標系后,平面被坐標軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限。

  第二象限(,+) 第一象限(+,+)

  第三象限(,) 第四象限(+,)

  2、注意:坐標軸上的點不屬于任何一個象限

  3、你能說出上面例子中各點在第幾象限嗎?

  三、理解與運用

  1、在游戲中學數學:以某同學為原點,以他所在的橫排為x軸,以這一組為y軸,相鄰兩個同學之間的距離為單位長度建立坐標系.

  (1)下面大家一起找一找自己在坐標系中的坐標分別是什么?

  (2)下面這些坐標分別表示誰的位置? A(2,1);B(2,-1);C(-1,1);D(0,3);E(0,-1)

  2、例 寫出圖中的多邊形ABCDEF各個頂點的坐標.

  (1)點B與點C的縱坐標相同,線段BC的位置有什么特點?

  (2)線段CE的位置有什么特點?

  (3)坐標軸上點的坐標有什么特點?

  3、歸納:點的位置及其坐標特征:

 、.各象限內的點;

  ②.各坐標軸上的點;

 、.各象限角平分線上的點;

 、.對稱于坐標軸的兩點;

  ⑤.對稱于原點的兩點。

  4、對應練習:教材43頁1、2題(在書上完成)。

  四、學習體會:

  1、本節課你有哪些收獲?你還有哪些疑惑?

  2、預習時的疑難解決了嗎?

  五、自我檢測:

  (一)選擇題:

  1、若點M(x,y)滿足x+y=0,則點M位于( )。

  (A)第一、三象限兩坐標軸夾角的平分線上; (B)x軸上;

  (C) x軸上; (D)第二、四象限兩坐標軸夾角的平分線上。

  2、第四象限中的點P(a,b)到x軸的距離是( )

  (A)a (B)-a (C)-b (D)b

  3、點A(-m,1-2m)關于原點對稱的點在第一象限,那么m的取值范圍是( )。

  (A)m(B)m (C)m (D)m0 。

  (二)填空題:

  1、點P(3,-4)關于原點的對稱點的坐標為___________;關于x軸的對稱點的坐標為___________;關于y軸的對稱點的坐標為____________

  2、已知A(a,6),B(2,b)兩點。

  ①當A、B關于x軸對稱時,a=_____;b=_____。

 、诋擜、B關于y軸對稱時,a=_____;b=_____。

  ③當A、B關于原點對稱時,a=_____;b=_____。

  六、解答題

  1.在下圖中,分別寫出八邊形各個頂點的坐標.

  2.下圖是畫在方格紙上的某島簡圖.

  (1)分別寫出地點A,L,O,P,E的坐標;

  (2)(4,7)(5,5)(2,5)所代表的地點分別是什么?

初一數學教案11

  教學內容分析

  教育不只是一種簡單的“告訴”。學生擁有自己的獨立思考水平和認知系統。當他們遇到一個新的待解決的問題情境時,他們會自覺而主動地從自己已有的知識架構和認知經驗中摸索、收集、調動處理問題的方法和策略。三角形邊的關系這一內容是新教材新增加的內容,并安排在第二學段。通過這一內容的學習,使學生在已經建立三角形概念的基礎上,進一步深化理解三角形的組成特征,加深學生對三角形的認識,同時,也為以后學習三角形與四邊形及其他多邊形的聯系與區別打下基礎。

  根據新課標的精神,要改變學生學習的方式,讓學生經歷“數學化”、“做數學”等過程,并注重與生活實際緊密聯系,學有價值的數學。根據這一教學內容在教材中所處的地位與作用,以及新課標的要求,我認為設計這節課的理念是:活動參與、自主建構,聯系生活、應用數學。

  教學目標

  知識目標

  知道和理解“三角形任意兩邊的和大于第三邊”,能用它解釋一些生活現象,解決一些簡單的生活問題。

  能力目標

  通過動手操作、小組驗證,體驗探索三角形邊的關系的過程,培養猜測意識和自主探索、合作交流的能力。

  情感目標

  經歷探究、發現、驗證“三角形任意兩邊的和大于第三邊”的過程,體驗合作學習和數學學習的快樂。

  教學重點

  三角形三邊關系的實驗與探究

  教學難點

  三角形三邊關系的探究過程。

  教學關鍵

  使學生理解三角形邊的關系

  教學準備

  課件、三根小棒、三邊關系試驗報告單每組四根小棒

  教學方法

  自主探究小組討論

  課程類型

  學科課程

  教學過程

  活動的組織與實施(含教師活動和學生活動)

  設計意圖

  時間分配

  一、復習舊知,導入新課

  我手上拿的是什么?(三角板)它是什么圖形呢?(三角形)誰來說說什么是三角形?怎樣理解這個“圍”字(端點首尾相連)。同學們還知道三角形的哪些知識?關于三角形的知識還有很多,我們繼續往下看。

  復習舊的知識,使新舊知識之間有很好的連接

  2分鐘

  二、動手操作,發現問題

  師:老師這里有三根小棒,分別長3、5、10厘米,這3根小棒能圍成一個什么圖形?

  生:三角形。

  師:誰愿意上來圍一圍?圍的時候要注意小棒首尾相連。

  師:這三根小棒為什么圍不成三角形呢?三角形的三條邊之間到底有什么關系呢?今天,我們就一起來研究三角形的三邊關系(板書課題)

  三、猜想驗證,發現規律

  師:我們發現這三根小棒不能圍成三角形,怎樣做才能圍成三角形呢?

  生:換一根小棒

  師:怎樣換?同學們說的都是你們的猜想(課件演示猜想1)

  1、學法指導師:你們的這些猜想是否正確,三角形的三條邊到底有什么關系?我們可以通過做實驗來驗證一下,現在老師給同學們準備了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起試著圍一圍三角形。同學們親自動手擺一擺,拼一拼,看看有什么結果。先看要求(大屏幕)操作要求:(1)、2人一組合作完成四種拼法(2)、圍三角形時要注意首尾相連。(3)、完成后,填寫好活動記錄表準備交流

  2、動手操作,尋找規律(師巡視,并指導)

  3、交流匯報,探究規律。

  師:哪個小組愿意來匯報。小組上臺展示,

  3厘米、8厘米、10厘米能

  3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能師:其它組有不同意見嗎?

  師:仔細觀察四種結果,有的圍不成,而有的卻能圍成。這是為什么呢?先看不能圍成三角形的每組小棒的長度之間有什么關系?說說你能發現些什么?同桌討論一下。能圍成三角形的這幾組小棒長度之間又有什么聯系?

  三根小棒要圍成三角形,必須滿足什么條件?

  通過剛才的實驗和分析,你發現三角形三條邊長度之間有什么關系嗎?先看不能圍成三角形的這組情況,誰愿意說說3、5、10這三根小棒為什么不能圍成三角形?

  生:

  師:其他同學贊同嗎?誰再來說一說。

  師:我明白了,3厘米的邊是不能和5厘米、10厘米的邊圍成三角形的,因為這兩條邊之和小于第三條邊。(板書3+4〈 8)你很會觀察。

 。ㄕn件演示)師:再說3、5、8這三根,同學們有些爭議,到底它們能不能圍成三角形呢?不能,為什么?有誰愿意談談?

  生:3+5=8重合了不能

  師:是這樣嗎?(課件演示)請看大屏幕。

  師:真的是這樣,通過演示現在明白這個同學的意思了嗎?誰愿意再來說一說。

  師:通過以上的動手操作和探究分析,我們發現了當兩邊之和小于、等于第三條邊時,這3條邊是圍不成三角形的。

  師:那么怎樣才能圍成三角形呢?

  生:兩條邊加起來要大于第三邊就行了。

  師(板書):兩邊之和大于第三邊

  師:我們來看看能圍成三角形的這兩組是不是這樣的呢,3+8>10、8+5>10看起來是這樣的.。

  3)師:回頭看不能圍成的情況,也有3+8>4、4+8>3、3+8>5、5+8>3(兩邊之和大于第三邊)的情況,怎么就不能圍成三角形呢?

  生:有一種不符合就不行了

  師:看來只是其中的兩條邊之和大于第3條邊是不完整的

  生1:加“任何”、“任意”

  生2:其他兩邊之和都大于第三條邊。

  生3:無論哪兩條邊之和都要大于第三邊。

  4、歸納小結

  師:看來只是其中的兩條邊之和大于第3條邊是不完整的,

  師:這句話概括說就是:任意兩邊之和大于第三邊(板書:任意)師:是這樣嗎?再挑選一組能圍成三角形的三條邊,來驗證:生:3+4>5、3+5>4、4+5>3,師:這個例子證明了你的想法是對的,這兩個三角形的三邊關系都是:任意兩邊之和大于第三邊(齊讀)

  四、運用結論,加深理解

  師:我們已經知道三角形的三邊關系,下面讓我們來判斷幾道題目

  1、快速判斷。

  3cm、5cm、() 4cm

  7cm、4cm、() 2cm

  6cm、3cm、() 1cm

  2cm、3cm、() 3cm

  師:為什么圍不成?你是怎么判斷的?

  2、出示P82例3圖

  這是小明上學的路線圖,同學們仔細看一看,他可以怎樣走?

  3、這幾條路中,哪條最近?這是為什么呢?

  老師在生活中還看到了這么一種現象:(課件演示)公園里有一條這樣的路,路的兩旁是草坪,為什么很多人都往草坪中間走?師:今天你有什么收獲?

  其實數學就在我們身邊,只要你平時多觀察、多動腦,你一定能成為數學的好朋友。

  開發學生的動手能力和觀察能力,在實踐中發現問題并嘗試找出問題的原因反復試驗,加深同學的理解,猜想驗證,發現其內在規律增強小組合作意識以及動手操作能力鍛煉同學發言及表達能力

  通過小組討論,發現問題,嘗試找出原因,激發學生自主學習的精神在教學過程中不斷引導,自主發現問題,加深對知識的理解和鞏固運用練習,鞏固學習的知識,加深印象

  3分鐘5分鐘7分鐘3分鐘5分鐘10分鐘5分鐘

  板書設計

  三角形邊的關系兩邊之和大于第三邊

  教學反思

  本節課鞏固應用部分的三個環節,是從學生的學習認知規律出發,遵循從易到難的原則,分鞏固性練習、應用性練習、拓展性練習三個層次。并與學生身邊的生活例子相結合,既能體現數學教學生活化的新理念,又能有效地激發學生的學習興趣,拓展學生的思維,提高學生的數學學習能力。

  以上教學設計,以學生的學習心理為基礎,通過簡單的動手操作,創設有效的“數學問題情境”,激發學生強烈的探究欲望。通過引導學生大膽的猜想,積極的驗證和合理的歸納,使學生學到新知識的同時,經歷數學知識的形成過程,這樣的教學將會有效地激活了學生的數學思維,使學生在知識、能力,以及情感態度等方面都將得到較好的發展。又通過擺圖形,尋找數據間的關系;又通過數據的整理和分析,確定圖形的存在性和圖形具有的性質,使數形緊密結合,滲透了數形結合的思想方法;同時對不同類型三角形都具有的共性歸納總結,滲透了數學的歸納思想。教學中始終以這一核心的思想為教學靈魂,時時滲透,處處體現。

初一數學教案12

  教學目標

  1,通過對數“零”的意義的探討,進一步理解正數和負數的概念;

  2,利用正負數正確表示相反意義的量(規定了指定方向變化的量)

  3,進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。

  教學難點:深化對正負數概念的理解

  知識重點:正確理解和表示向指定方向變化的量

  教學過程:(師生活動)設計理念

  知識回顧與深化回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?

  問題1:有沒有一種既不是正數又不是負數的數呢?

  學生思考并討論

 。〝0既不是正數又不是負數,是正數和負數的分

  界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)

  例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的最高溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數和負數 .

  那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數

  問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類?“數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入

  負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。

  所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即可,不必深究.

  分析問題

  解決問題問題3:教科書第6頁例題

  說明:這是一個用正負數描述向指定方向變化情況的例子, 通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的`增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。

  歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).

  類似的例子很多,如:

  水位上升-3m,實際表示什么意思呢?

  收人增加-10%,實際表示什么意思呢?

  可視教學中的實際情況進行補充.

  這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在不必向學生提出.

  鞏固練習教科書第6頁練習

  閱讀思考

  教科書第8頁閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流

  小結與作業

  課堂小結以問題的形式,要求學生思考交流:

  1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?

  2,怎樣用正負數表示具有相反意義的量?

 。ㄓ谜龜当硎酒渲幸环N意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)

  本課作業

  1,必做題:教科書第7頁習題1.1第3,6,7,8題

  2,選做題:教師自行安排

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指定方向變化的量。

  2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.

  3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.

  4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.

初一數學教案13

  教學目標

  1,掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;

  2,了解分類的標準與分類結果的相關性,初步了解“集合”的含義;

  3,體驗分類是數學上的常用處理問題的方法。

  教學難點正確理解分類的標準和按照一定的標準進行分類

  知識重點正確理解有理數的概念

  教學過程(師生活動)設計理念

  探索新知在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).

  問題1:觀察黑板上的9個數,并給它們進行分類.

  學生思考討論和交流分類的情況.

  學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.

  例如,

  對于數5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5.1不是整個的數,稱為“正分數(由于小數可化為分數,以后把小數和分數都稱為分數)

  通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數。

  按照書本的說法,得出“整數”“分數”和“有理數”的概念。

  看書了解有理數名稱的由來.

  “統稱”是指“合起來總的名稱”的意思.

  試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的)分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

  學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。

  有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

  練一練1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.

  2,教科書第10頁練習.

  此練習中出現了集合的概念,可向學生作如下的說明.

  把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;

  數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.

  思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?

  也可以教師說出一些數,讓學生進行判斷。

  集合的概念不必深入展開。

  創新探究問題2:有理數可分為正數和負數兩大類,對嗎?為什么?

  教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。

  有理數這個分類可視學生的程度確定是否有必要教學。

  應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的.標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

  小結與作業

  課堂小結到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。

  本課作業1,必做題:教科書第18頁習題1.2第1題

  2,教師自行準備

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概

  念.分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進

  行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分

  類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

  2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。

  3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。

  課題:1.2.2數軸

  教學目標1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;

  2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;

  3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。

  教學難點數軸的概念和用數軸上的點表示有理數

  知識重點

  教學過程(師生活動)設計理念

  設置情境

  引入課題教師通過實例、課件演示得到溫度計讀數.

  問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?

  (多媒體出示3幅圖,三個溫度分別為零上、零度和零下)

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

  (小組討論,交流合作,動手操作)創設問題情境,激發學生的學習熱情,發現生活中的數學

  點表示數的感性認識。

  點表示數的理性認識。

  合作交流

  探究新知教師:由上述兩問題我們得到什么啟發?你能用一條直線上的點表示有理數嗎?

  讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數的直線必須滿足什么條件?

  從而得出數軸的三要素:原點、正方向、單位長度體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。

  從游戲中學數學做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數字”,如果規定第3個同學為原點,游戲還能進行嗎?學生游戲體驗,對數軸概念的理解

  尋找規律

  歸納結論問題3:

  1,你能舉出一些在現實生活中用直線表示數的實際例子嗎?

  2,如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?

  3,哪些數在原點的左邊,哪些數在原點的右邊,由此你會發現什么規律?

  4,每個數到原點的距離是多少?由此你會發現了什么規律?

  (小組討論,交流歸納)

  歸納出一般結論,教科書第12的歸納。這些問題是本節課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。

  鞏固練習

  教科書第12頁練習

  小結與作業

  課堂小結請學生總結:

  1,數軸的三個要素;

  2,數軸的作以及數與點的轉化方法。

  本課作業1,必做題:教科書第18頁習題1.2第2題

  2,選做題:教師自行安排

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1,數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。

  2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。

  3,注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。

初一數學教案14

  一、教學目標

  1.通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關內容的認識,積累數學活動經驗。

  2.能用適當的圖形和語言表示自己的思考結果。

  二、教學重點和難點

  本堂內容的重點是七巧板的制作和拼擺,難點是拼圖所要表現的幾何圖形,對已學過的平行,垂直及角等有關內容的有機聯系和語言表達。

  三、教學手段

  引導活動討論

  引導:意在教師講解七巧板的歷史,七巧板制作的.方法。

  活動:人人參與制作七巧板,拼擺七巧板的圖案。

  討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。

  四、教學方法

  啟發式教學

  五、教學過程

  1 創設情景,引入新課

  先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。

  2 合作交流,探索新知

  利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學交流,與老師交流。

  (1) 你的拼圖用了什么形狀的板?你想表現什么?

  (2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關系表示出來。

  (3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。

  通過學生的展示,教師作適時的評價,樹立榜樣,培養學生之間的競爭意識。

  3 范例教學

  介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的圖案,激發學生的創造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發揮學生的創造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。

  4 反饋練習

  由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現的內容,與所學的知識的聯系,呈現平行,垂直及角的有關知識。

  5 歸納小結

  通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關內容的認識,積累數學活動的經驗,提高了空間觀念和觀察、分析、概括表達的能力。

  六、練習設計

  利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環境。

  七、板書設計

  4.7有趣的七巧板

  (一)知識回顧 (三)例題解析 (五)課堂小結

  (二)觀察發現 (四)課堂練習 練習設計

初一數學教案15

  大家都聽說過一句名言:“世界上不是缺少美,而是缺少發現美的眼睛”,大家知道這句話是誰說的嗎?不知道沒關系,大家記住下一句名言就好:“世界上不是缺少數學,而是缺少發現數學的眼睛——李老師語錄”,那這個著名的李老師是誰呢?遠在天邊,近在眼前。不要太驚訝,想要簽名的下課來找我就行。

  好,那我們接下來就用發現數學的眼睛來看一看,生活中常見的幾何體都有哪些物體,分別是什么形狀?水杯,籃球,冰激凌,金字塔,黑板擦。分別對應圓柱,球,圓錐,棱錐,棱柱。其中長方體,正方體是特殊的棱柱。

  好了,幾何體我們都了解了,面對這些雜亂無章的幾何體是不是感覺很亂,接下來我們就給幾何體分分類:

  一、常見幾何體分類

  1、 按照柱、錐、球分類

  圓柱

  柱生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱。

  錐圓錐

  棱錐

  2、 按照有無頂點分類

  生活中的立體圖形

  3、 按照有無曲面分類

  二、棱柱(直)

  1、 基本概念

 。1) 棱:在棱柱中,任何相鄰的兩個面的交線叫做棱。

 。2) 側棱:在棱柱中,相鄰兩個側面的交線叫做側棱。

  2、 特征

  (1) 棱柱的所有側棱長相等。

  (2) 棱柱的上下底面完全相同且都是多邊形。

 。3) 棱柱的側面都是長方形。

 。4) n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。

  3、 分類

  按照底面多邊形的邊數分類,底面幾邊形就是幾棱柱。

  三、圖形的構成元素

  點:線與線橡膠的地方就是點。

  1 線:面與面相交的地方就是線。

  面:包圍著體的是面。

  2、聯系

  點動成線,線動成面,面動成體。

  展開與折疊

  一、正方體的展開圖(11種)

  1-4-1型:(6種)

  2-3-1型(3種)

  2-2-2型(1種)

  3-3型(

  1種)

  二、正方體的折疊

  展開圖中不出現一字型、田字形、凹字形,2-4型,若有此形狀的展開圖則折不成正方體。

  三、總結規律:

  一線不過四,

  田凹應棄之;

  相間、Z端是對面,

  間二、拐角鄰面知。

  四、常見幾何體的.展開圖

  三、截一個幾何體

  一、正方體的截面

  用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

  可能出現的:銳角三角型、等邊、等腰三角形, 正方形、矩形、非矩形的平行四邊形、 非等腰梯形、 等腰梯形、五邊形、六邊形、正六邊形

  不可能出現:鈍角三角形、直角三角形、直角梯形、正五邊形、七邊形或更多邊形

  二、常見幾何體截面

  四、從三個方向看物體的形狀

  一、三視圖

  物體的三視圖指主視圖、俯視圖、左視圖。

  主視圖:從正面看到的圖,叫做主視圖。

  左視圖:從左面看到的圖,叫做左視圖。

  俯視圖:從上面看到的圖,叫做俯視圖。

  二、聯系

  主俯長對正,主左高平齊,俯左寬相等。

  三、畫法

  一看,二畫,三查(尺寸,虛實)

【初一數學教案】相關文章:

給予初一作文初一作文03-25

初一森林防火作文初一作文03-25

初一軍訓作文初一作文03-25

初一的日記05-23

權力-初一02-10

一地泛黃初一作文初一作文03-25

上下數學教案(精選6篇)03-08

初一學習總結11-27

初一校園作文11-10

報恩的初一作文12-18

国产v亚洲v天堂无码网站,综合亚洲欧美日韩一区二区,精品一级毛片A久久久久,欧美一级待黄大片视频
亚洲日韩欧美一区、二区 | 一本大道香蕉网站日本 | 亚洲国人久久精品 | 亚洲日韩精品第一页一区 | 亚洲第一视频在线播放 | 日韩中文字幕AV |