八年級數(shù)學的教案

時間:2022-12-30 14:29:51 數(shù)學教案 我要投稿

八年級數(shù)學的教案(15篇)

  作為一位兢兢業(yè)業(yè)的人民教師,可能需要進行教案編寫工作,教案是教學活動的總的組織綱領和行動方案。那么問題來了,教案應該怎么寫?下面是小編幫大家整理的八年級數(shù)學的教案,希望能夠幫助到大家。

八年級數(shù)學的教案(15篇)

八年級數(shù)學的教案1

  教學目標:

  1、經(jīng)歷運用拼圖的方法說明勾股定理是正確的過程,在數(shù)學活動中發(fā)展學生的探究意識和合作交流的習慣。

  2、掌握勾股定理和他的簡單應用

  重點難點:

  重點:能熟練運用拼圖的方法證明勾股定理

  難點:用面積證勾股定理

  教學過程

  一、創(chuàng)設問題的情境,激發(fā)學生的學習熱情,導入課題

  我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學交流。在同學操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

  (同學們回答有這幾種可能:(1)(2))

  在同學交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。

  請同學們對上面的式子進行化簡,得到:即=

  這就可以從理論上說明勾股定理存在。請同學們?nèi)ビ脛e的'拼圖方法說明勾股定理。

 二、講例

  1、飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?

  分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

  解:由勾股定理得

  即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:

  答:飛機每個小時飛行540千米。

  三、議一議

  展示投影2(書中的圖1—9)

  觀察上圖,應用數(shù)格子的方法判斷圖中的三角形的三邊長是否滿足

  同學在議論交流形成共識之后,老師總結(jié)。

  勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

  四、作業(yè)

  1、 1、課文P11,1.2 ,1 、2

  2、選用作業(yè)。

八年級數(shù)學的教案2

  一、學習目標

  二、學習過程

  閱讀教材

  獨立完成下列預習作業(yè):

  1、利用分式的基本性質(zhì):將分式的分子和分母同乘適當?shù)恼剑桓淖兎质降闹担箮讉分式化為分母相同的分式,這樣的分式變形叫做分式的'通分.

  2、根據(jù)你的預習和理解找出:

  ①與的最簡公分母是; ②與的最簡公分母是;

  ③與最簡公分母是;④與的最簡公分母是.

  ★★如何確定最簡公分母?一般是取各分母的所有因式的次冪的積

  三、合作交流,解決問題:

  1、通分:⑴與⑵,

  2、通分:⑴與; ★⑵,.

  四、課堂測控:

  1、分式和的最簡公分母是.分式和的最簡公分母是.

  2、化簡:

  3、分式,,,中已為最簡分式的有( )

  A、1個B、2個C、3個D、4個

  4、化簡分式的結(jié)果為( )

  A、 B、 C、 D、

  5、若分式的分子、分母中的x與y同時擴大2倍,則分式的值( )

  A、擴大2倍B、縮小2倍C、不變D、是原來的2倍

  6、不改變分式的值,使分式的各項系數(shù)化為整數(shù),分子、分母應乘以( )

  A、10 B、9 C、45 D、90

  7、不改變分式的值,使分子、分母次項的系數(shù)為整數(shù),正確的是( )

  A、 B、 C、 D、

  8、通分:

  ⑴與⑵與

八年級數(shù)學的教案3

  一、創(chuàng)設情景,明確目標

  多媒體投影一組圖片,讓同學們從中抽象出平面圖形,從而引出課題。

  二、自主學習,指向目標

  學習至此:請完成《學生用書》相應部分。

  三、合作探究,達成目標

  多邊形的定義及有關(guān)概念

  活動一:閱讀教材P19。

  展示點評:多邊形是怎么組成的?常見的多邊形有哪些?邊數(shù)最少的多邊形是幾邊形?什么是多邊形的邊、內(nèi)角、外角?

  小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?

  反思小結(jié):多邊形的定義及相關(guān)概念。

  針對訓練:見《學生用書》相應部分

  多邊形的對角線

  活動二:(1)十邊形的對角線有35條。

  (2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。

  展示點評:結(jié)合圖形說明什么是多邊形的對角線?三角形是否有對角線?從五邊形的一個頂點出發(fā)可以引幾條對角線?五邊形有幾條對角線?從n邊形的一個頂點出發(fā)可以引幾條對角線?n邊形有多少條對角線?表達式中的(n—3)是什么意思?為什么要除以2?

  反思小結(jié):當n為已知時,可以直接代入求得對角線的條數(shù),當對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。

  小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?

  針對訓練:見《學生用書》相應部分

  正多邊形的有關(guān)概念

  活動二:閱讀教材P20。

  展示點評:畫圖說明什么是凸多邊形和凹多邊形?正多邊形要求的條件是什么?邊數(shù)最少的正多邊形是什么?

  小組討論:判斷一個多邊形是否是正多邊形的條件?

  反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。

  針對訓練:見《學生用書》相應部分

  四、總結(jié)梳理,內(nèi)化目標

  本節(jié)學習的數(shù)學知識是:

  1、多邊形、多邊形的外角,多邊形的對角線。

  2、凸凹多邊形的概念。

  五、達標檢測,反思目標

  1、下列敘述正確的是(D)

  A、每條邊都相等的多邊形是正多邊形

  B、如果畫出多邊形某一條邊所在的直線,這個多邊形都在這條直線的同一側(cè),那么它一定是凸多邊形

  C、每個角都相等的多邊形叫正多邊形

  D、每條邊、每個角都相等的多邊形叫正多邊形

  2、小學學過的下列圖形中不可能是正多邊形的是(D)

  A、三角形B。正方形C。四邊形D。梯形

  3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的'鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關(guān)系。

  4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。

八年級數(shù)學的教案4

  ●教學目標

  (一)教學知識點

  1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個三角形是否相似.

  2.能根據(jù)相似比進行計 算.

  (二)能力訓練要求

  1.能根據(jù)定義判斷兩個三角形是否相似,訓練 學生的判斷能力.

  2.能根據(jù)相似比求長度和角度,培養(yǎng)學生的運用能力.

  (三)情感與價值觀要求

  通過與相似多邊形有關(guān)概念的類比,滲透類比的教學思想,并領會特殊與一般的`關(guān)系.

  ●教學重點 相似三角形的定義及運用.

  ●教學難點 根據(jù)定義求線段長或角的度數(shù).

  ●教學過程

  Ⅰ.創(chuàng)設問題情境,引入新課

  今天, 我們就來研究相似三角形.

  Ⅱ.新課講解

  1.相似三角形的定義及記法

  三角對應相等,三邊 對應成比例的兩個三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF

  其中對應頂點要寫在對應位置,如A與D,B與E,C與F相對應.AB∶DE等于相似比.

  2.想一想

  如果△ABC∽△DEF,那么哪些角是對應角?哪些邊是對應邊?對應 角 有什么關(guān)系?對應邊呢?

  所以 D、E、F. .

  3.議一議,學生討論

  (1)兩個全等三角形一定相似嗎?為什么?

  (2)兩個直角三角 形一 定相似嗎?兩個等腰直角三角形呢?為 什么?

  (3)兩個等腰三角形一定相似嗎?兩個等邊三角形呢?為什么?

  結(jié)論:兩 個全等三角形一定相似.

  兩個 等腰直角三角形一定相似.兩個等邊三角形一定相似.兩個直角三角形和兩個等腰三角形不一定相似.

  4.例題

  例1、有一塊呈三角形形狀 的草坪,其中一邊的長是20 m,在這個草坪的圖紙上,這條邊長5 cm,其他兩邊的 長都是3.5 cm,求該草坪其他兩邊的實際長度.

  例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

  ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長.

  5.想一想

  在例2的條件下,圖中有哪些線段成比例?

  Ⅲ.課堂練習 P129

  Ⅳ.課時小結(jié)

  相似三角形的 判定方法定義法.

  Ⅴ.課后作業(yè)

八年級數(shù)學的教案5

  平方差公式

  學習目標:

  1、能推導平方差公式,并會用幾何圖形解釋公式;

  2、能用平方差公式進行熟練地計算;

  3、經(jīng)歷探索平方差公式的推導過程,發(fā)展符號感,體會特殊一般特殊的認識規(guī)律.

  學習重難點:

  重點:能用平方差公式進行熟練地計算;

  難點:探索平方差公式,并用幾何圖形解釋公式.

  學習過程:

  一、自主探索

  1、計算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

  (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

  2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn).

  3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?

  4、平方差公式的特征:

  (1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差。或者說兩 個二項式必須有一項完全相同,另一項只有符號不同。

  (2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。

  二 、試一試

  例1、利用平方差公式計算

  (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

  例2、利用平方差公式計算

  (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

  三、合作交流

  如圖,邊長為a的大正方形中有一個邊長為b的小正方形.

  (1)請表示圖中陰影部分的面積.

  (2)小穎將陰影部分拼成了一個長方形,這個長方形的.長和寬分別是多少?你能表示出它的面積嗎? a a b

  (3)比較(1)(2)的結(jié)果,你能驗證平方差公式嗎?

  四、鞏固練習

  1、利用平方差公式計算

  (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

  (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

  2、利用平方差公式計算

  (1)803797 (2)398402

  3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

  A.只能是數(shù) B.只能是單項式 C.只能是多項式 D.以上都可以

  4.下列多項式的乘法中,可以用平方差公式計算的是( )

  A.(a+b)(b+a) B.(-a+b)(a-b)

  C.( a+b)(b- a) D.(a2-b)(b2+a)

  5.下列計算中,錯誤的有( )

  ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

  ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

  A.1個 B.2個 C.3個 D.4個[來源:中.考.資.源.網(wǎng)WWW.ZK5U.COM]

  6.若x2-y2=30,且x-y=-5,則x+y的值是( )

  A.5 B.6 C.-6 D.-5

  7.(-2x+y)(-2x-y)=______.

  8.(-3x2+2y2)(______)=9x4-4y4.

  9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

  10.兩個正方形的邊長之和為5,邊長之差為2,那么用較大的正方形的面積減去較小的正方形的面積,差是_____.

  11.利用平方差公式計算:20 19 .

  12.計算:(a+2)(a2+4)(a4+16)(a-2).

  五、學習反思

  我的收獲:

  我的疑惑:

  六、當堂測試

  1、下列多項式乘法中能用平方差公式計算的是( ).

  (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

  2、填空:(1)(x2-2)(x2+2)=

  (2)(5x-3y)( )=25x2-9y2

  3、計算:

  (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

  4.利用平方差公式計算

  ①1003997 ②14 15

  七、課外拓展

  下列各式哪些能用平方差公式計算?怎樣用?

  1) (a-b+c)(a-b-c)

  2) (a+2b-3)(a-2b+3)

  3) (2x+y-z+5)(2x-y+z+5)

  4) (a-b+c-d)(-a-b-c-d)

  2.2完全平方公式(1)

八年級數(shù)學的教案6

  教學建議

  知識結(jié)構(gòu)

  重難點分析

  本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.

  本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

  教法建議

  1. 對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應用講授法應好些,教師可根據(jù)學生情況參考采用

  2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

  教學設計示例

  一、教學目標

  1.掌握中位線的概念和三角形中位線定理

  2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

  3.能夠應用三角形中位線概念及定理進行有關(guān)的論證和計算,進一步提高學生的計算能力

  4.通過定理證明及一題多解,逐步培養(yǎng)學生的分析問題和解決問題的能力

  5. 通過一題多解,培養(yǎng)學生對數(shù)學的'興趣

  二、教學設計

  畫圖測量,猜想討論,啟發(fā)引導.

  三、重點、難點

  1.教學重點:三角形中位線的概論與三角形中位線性質(zhì).

  2.教學難點:三角形中位線定理的證明.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、膠片、常用畫圖工具

  六、教學步驟

  【復習提問】

  1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).

  2.說明定理的證明思路.

  3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

  分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

  4.什么叫三角形中線?(以上復習用投影儀打出)

  【引入新課】

  1.三角形中位線:連結(jié)三角形兩邊中點的線段叫做三角形中位線.

  (結(jié)合三角形中線的定義,讓學生明確兩者區(qū)別,可做一練習,在 中,畫出中線、中位線)

  2.三角形中位線性質(zhì)

  了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).

  如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

  三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

  應注意的兩個問題:①為便于同學對定理能更好的掌握和應用,可引導學生分析此定理的特點,即同一個題設下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應用時可根據(jù)需要來選用其中的結(jié)論(可以單獨用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導學生用不同的方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

  由學生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

  (l)延長DE到F,使 ,連結(jié)CF,由 可得AD FC.

  (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

  (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

  上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

  (證明過程略)

  例 求證:順次連結(jié)四邊形四條邊的中點,所得的四邊形是平行四邊形.

  (由學生根據(jù)命題,說出已知、求證)

  已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

  求證:四邊形EFGH是平行四邊形.‘

  分析:因為已知點分別是四邊形各邊中點,如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

  證明:連結(jié)AC.

  ∴ (三角形中位線定理).

  同理,

  ∴GH EF

  ∴四邊形EFGH是平行四邊形.

  【小結(jié)】

  1.三角形中位線及三角形中位線與三角形中線的區(qū)別.

  2.三角形中位線定理及證明思路.

  七、布置作業(yè)

  教材P188中1(2)、4、7

八年級數(shù)學的教案7

  一、教學目的

  1.使學生進一步理解自變量的取值范圍和函數(shù)值的意義.

  2.使學生會用描點法畫出簡單函數(shù)的圖象.

  二、教學重點、難點

  重點:1.理解與認識函數(shù)圖象的意義.

  2.培養(yǎng)學生的看圖、識圖能力.

  難點:在畫圖的三個步驟的列表中,如何恰當?shù)剡x取自變量與函數(shù)的對應值問題.

  三、教學過程

  復習提問

  1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

  2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?

  3.說出下列各點所在象限或坐標軸:

  新課

  1.畫函數(shù)圖象的方法是描點法.其步驟:

  (1)列表.要注意適當選取自變量與函數(shù)的對應值.什么叫“適當”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的`圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.

  一般地,我們把自變量與函數(shù)的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數(shù)的對應值列出表來.

  (2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標,在直角坐標系中描出相應的點.

  (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.

  一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線).

  2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象.

  小結(jié)

  本節(jié)課的重點是讓學生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖.

  練習

  ①選用課本練習(前一節(jié)已作:列表、描點,本節(jié)要求連線)

  ②補充題:畫出函數(shù)y=5x-2的圖象.

  作業(yè)

  選用課本習題.

  四、教學注意問題

  1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認識函數(shù)的本質(zhì)特征.

  2.注意充分調(diào)動學生自己動手畫圖的積極性.

  3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養(yǎng)學生看圖、識圖的能力.

八年級數(shù)學的教案8

  教學目標

  【知識目標】

  1.用分式方程的數(shù)學模型反映現(xiàn)實情境中的實際問題.

  2.用分式方程來解決現(xiàn)實情境中的問題.

  【能力目標】

  1.經(jīng)歷運用分式方程解決實際問題的過程,發(fā)展抽象概括、分析問題

  和解決問題的能力.

  2.認識運用方程解決實際問題的關(guān)鍵是審清題意,尋找等量關(guān)系,建

  立數(shù)學模型.

  【情感目標】

  1.經(jīng)歷建立分式方程模型解決實際問題的過程,體會數(shù)學模型的應用

  價值,從而提高學習數(shù)學的興趣.

  2.培養(yǎng)學生的創(chuàng)新精神,從中獲得成功的體驗.

  教學重點

  1.審明題意,尋找等量關(guān)系,將實際問題轉(zhuǎn)化成分式方程的數(shù)學模型.

  2.根據(jù)實際意義檢驗解的合理性.

  教學難點

  尋求實際問題中的等量關(guān)系,尋求不同的解決問題的'方法.

  教具準備

  多媒體課件

  教學過程

  引入新課

  前兩節(jié)課,我們認識了分式方程這樣的數(shù)學模型,并且學會了解分式方程.接下來,我們就用分式方程解決生活中實際問題.

  展示學習目標:

  了解用分式方程的數(shù)學模型反映現(xiàn)實情境中的實際問題。

  學會用分式方程來解決現(xiàn)實情境中的問題。

八年級數(shù)學的教案9

  第11章平面直角坐標系

  11。1平面上點的坐標

  第1課時平面上點的坐標(一)

  教學目標

  【知識與技能】

  1。知道有序?qū)崝?shù)對的概念,認識平面直角坐標系的相關(guān)知識,如平面直角坐標系的構(gòu)成:橫軸、縱軸、原點等。

  2。理解坐標平面內(nèi)的點與有序?qū)崝?shù)對的一一對應關(guān)系,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。

  3。能在方格紙中建立適當?shù)钠矫嬷苯亲鴺讼祦砻枋鳇c的位置。

  【過程與方法】

  1。結(jié)合現(xiàn)實生活中表示物體位置的例子,理解有序?qū)崝?shù)對和平面直角坐標系的作用。

  2。學會用有序?qū)崝?shù)對和平面直角坐標系中的點來描述物體的位置。

  【情感、態(tài)度與價值觀】

  通過引入有序?qū)崝?shù)對、平面直角坐標系讓學生體會到現(xiàn)實生活中的問題的解決與數(shù)學的發(fā)展之間有聯(lián)系,感受到數(shù)學的價值。

  重點難點

  【重點】

  認識平面直角坐標系,寫出坐標平面內(nèi)點的坐標,已知坐標能在坐標平面內(nèi)描出點。

  【難點】

  理解坐標系中的坐標與坐標軸上的數(shù)字之間的關(guān)系。

  教學過程

  一、創(chuàng)設情境、導入新知

  師:如果讓你描述自己在班級中的位置,你會怎么說?

  生甲:我在第3排第5個座位。

  生乙:我在第4行第7列。

  師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數(shù)字確定下來。

  二、合作探究,獲取新知

  師:在以上幾個問題中,我們根據(jù)一個物體在兩個互相垂直的方向上的數(shù)量來表示這個物體

  的位置,這兩個數(shù)量我們可以用一個實數(shù)對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

  生:3排5號。

  師:對,它們對應的不是同一個位置,所以要求表示物體位置的這個實數(shù)對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?

  生:用一個有序的實數(shù)對來表示。

  師:對。我們學過實數(shù)與數(shù)軸上的點是一一對應的,有序?qū)崝?shù)對是不是也可以和一個點對應起來呢?

  生:可以。

  教師在黑板上作圖:

  我們可以在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

  正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構(gòu)成了平面直角坐標系,這個平面叫做坐標平面。

  師:有了平面直角坐標系,平面內(nèi)的點就可以用一個有序?qū)崝?shù)對來表示了。現(xiàn)在請大家自己動手畫一個平面直角坐標系。

  學生操作,教師巡視。教師指正學生易犯的錯誤。

  教師邊操作邊講解:

  如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在后,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。

  教師多媒體出示:

  師:如圖,請同學們寫出A、B、C、D這四點的坐標。

  生甲:A點的坐標是(—5,4)。

  生乙:B點的坐標是(—3,—2)。

  生丙:C點的坐標是(4,0)。

  生丁:D點的坐標是(0,—6)。

  師:很好!我們已經(jīng)知道了怎樣寫出點的`坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?

  教師邊操作邊講解:

  在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

  學生動手作圖,教師巡視指導。

  三、深入探究,層層推進

  師:兩個坐標軸把坐標平面劃分為四個區(qū)域,從x軸正半軸開始,按逆時針方向,把這四個區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬于任何一個象限。在同一象限內(nèi)的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?

  生:都一樣。

  師:對,由作垂線求坐標的過程,我們知道第一象限內(nèi)的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內(nèi)點的坐標的符號嗎?

  生:能。第二象限內(nèi)的點的坐標的符號為(—,+),第三象限內(nèi)的點的坐標的符號為(—,—),第四象限內(nèi)的點的坐標的符號為(+,—)。

  師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?

  生:能,在第二象限。

  四、練習新知

  師:現(xiàn)在我給出幾個點,你們判斷一下它們分別在哪個象限。

  教師寫出四個點的坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

  生甲:A點在第三象限。

  生乙:B點在第四象限。

  生丙:C點不屬于任何一個象限,它在y軸上。

  生丁:D點不屬于任何一個象限,它在x軸上。

  師:很好!現(xiàn)在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。

  學生作圖,教師巡視,并予以指導。

  五、課堂小結(jié)

  師:本節(jié)課你學到了哪些新的知識?

  生:認識了平面直角坐標系,會寫出坐標平面內(nèi)點的坐標,已知坐標能描點,知道了四個象限以及四個象限內(nèi)點的符號特征。

  教師補充完善。

  教學反思

  物體位置的說法和表述物體的位置等問題,學生在實際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學的聯(lián)系。教師在這節(jié)課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數(shù)學的魅力。在教學中我讓學生由生活中的實例與坐標的聯(lián)系感受坐標的實用性,增強了學生學習數(shù)學的興趣。

  第2課時平面上點的坐標(二)

  教學目標

  【知識與技能】

  進一步學習和應用平面直角坐標系,認識坐標系中的圖形。

  【過程與方法】

  通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

  【情感、態(tài)度與價值觀】

  培養(yǎng)學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。

  重點難點

  【重點】

  理解平面上的點連接成的圖形,計算圍成的圖形的面積。

  【難點】

  不規(guī)則圖形面積的求法。

  教學過程

  一、創(chuàng)設情境,導入新知

  師:上節(jié)課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,并在上面標出A(5,1),B(2,1),C(2,—3)這三個點。

  學生作圖。

  教師邊操作邊講解:

  二、合作探究,獲取新知

  師:現(xiàn)在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

  生甲:三角形。

  生乙:直角三角形。

  師:你能計算出它的面積嗎?

  生:能。

  教師挑一名學生:你是怎樣算的呢?

  生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

  師:很好!

  教師邊操作邊講解:

  大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

  圖形?

  學生完成操作后回答:平行四邊形。

  師:你能計算它的面積嗎?

  生:能。

  教師挑一名學生:你是怎么計算的呢?

  生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

  教師多媒體出示下圖:

八年級數(shù)學的教案10

  教學目標:

  知識目標:

  1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

  2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應地會求出另一個量的值。

  3、會對一個具體實例進行概括抽象成為數(shù)學問題。

  能力目標:

  1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

  2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

  情感目標:

  1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

  2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

  教學重點:

  掌握函數(shù)概念。

  判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

  能把實際問題抽象概括為函數(shù)問題。

  教學難點:

  理解函數(shù)的概念。

  能把實際問題抽象概括為函數(shù)問題。

  教學過程設計:

  一、創(chuàng)設問題情境,導入新課

  『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

  『生』:摩天輪。

  『師』:你們坐過嗎?

  ……

  『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?

  『生』:應該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉(zhuǎn)動一圈高度就重復一次。

  『師』:分析有道理。摩天輪上一點的高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的關(guān)系。

  大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據(jù)圖5-1進行填表:

  t/分 0 1 2 3 4 5 …… h/米

  t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

  『師』:對于給定的時間t,相應的高度h確定嗎?

  『生』:確定。

  『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

  『生』:研究的對象有兩個,是時間t和高度h。

  『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認識世界。下面我們就去研究一些有關(guān)變量的問題。

  二、新課學習

  做一做

  (1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

  填寫下表:

  層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

  『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。

  (2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

  ①計算當fenbie為50,60,100時,相應的滑行距離S是多少?

  ②給定一個V值,你能求出相應的S值嗎?

  解:略

  議一議

  『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

  『生』:相同點是:這三個問題中都研究了兩個變量。

  不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的`關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。

  『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。

  函數(shù)的概念

  在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。

  一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  三、隨堂練習

  書P152頁 隨堂練習1、2、3

  四、本課小結(jié)

  初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

  在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數(shù)的值。

  函數(shù)的三種表達式:

  圖象;(2)表格;(3)關(guān)系式。

  五、探究活動

  為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?

  (答案:Y=1.8x-6或)

  六、課后作業(yè)

  習題6.1

八年級數(shù)學的教案11

  一、學習目標

  1.多項式除以單項式的運算法則及其應用。

  2.多項式除以單項式的運算算理。

  二、重點難點

  重點:多項式除以單項式的運算法則及其應用。

  難點:探索多項式與單項式相除的運算法則的過程。

  三、合作學習

  (一)回顧單項式除以單項式法則

  (二)學生動手,探究新課

  1.計算下列各式:

  (1)(am+bm)÷m;

  (2)(a2+ab)÷a;

  (3)(4x2y+2xy2)÷2xy。

  2.提問:

  ①說說你是怎樣計算的;

  ②還有什么發(fā)現(xiàn)嗎?

  (三)總結(jié)法則

  1.多項式除以單項式:先把這個多項式的每一項除以XXXXXXXXXXX,再把所得的商XXXXXX

  2.本質(zhì):把多項式除以單項式轉(zhuǎn)化成XXXXXXXXXXXXXX

  四、精講精練

  例:(1)(12a3—6a2+3a)÷3a;

  (2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

  (3)[(x+y)2—y(2x+y)—8x]÷2x;

  (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

  隨堂練習:教科書練習。

  五、小結(jié)

  1、單項式的除法法則

  2、應用單項式除法法則應注意:

  A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運算過程中注意單項式的系數(shù)飽含它前面的符號;

  B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的.指數(shù);

  C、被除式單獨有的字母及其指數(shù),作為商的一個因式,不要遺漏;

  D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行;

  E、多項式除以單項式法則。

八年級數(shù)學的教案12

  教學目標:

  【知識與技能】

  1、理解并掌握等腰三角形的性質(zhì)。

  2、會用符號語言表示等腰三角形的性質(zhì)。

  3、能運用等腰三角形性質(zhì)進行證明和計算。

  【過程與方法】

  1、通過觀察等腰三角形的對稱性,發(fā)展學生的形象思維。

  2、通過實踐、觀察、證明等腰三角形的性質(zhì),積累數(shù)學活動經(jīng)驗,感受數(shù)學思考過程的條理性,發(fā)展學生的合情推理能力。

  3、通過運用等腰三角形的性質(zhì)解決有關(guān)問題,提高學生運用幾何語言表達問題的,運用知識和技能解決問題的能力。

  【情感態(tài)度】

  引導學生對圖形的觀察、發(fā)現(xiàn),激發(fā)學生的好奇心和求知欲,并在運用數(shù)學知識解答問題的活動中取得成功的體驗。

  【教學重點】

  等腰三角形的性質(zhì)及應用。

  【教學難點】

  等腰三角形的證明。

  教學過程:

  一、情境導入,初步認識

  問題1什么叫等腰三角形?它是一個軸對稱圖形嗎?請根據(jù)自己的理解,利用軸對稱的知識,自己做一個等腰三角形。要求學生獨立思考,動手作圖后再互相交流評價。

  可按下列方法做出:

  作一條直線l,在l上取點A,在l外取點B,作出點B關(guān)于直線l的對稱點C,連接AB,AC,CB,則可得到一個等腰三角形。

  問題2每位同學請拿出事先準備好的長方形紙片,按下圖方式折疊剪裁,再把它展開,觀察并討論:得到的△ABC有什么特點?

  教師指導:上述過程中,剪刀剪過的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

  把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的性質(zhì)嗎?說說你的猜想。

  在一張白紙上任意畫一個等腰三角形,把它剪下來,請你試著折一折。你的猜想仍然成立嗎?

  教學說明:通過學生的動手操作與觀察發(fā)現(xiàn),加深學生對等腰三角形性質(zhì)的理解。

  二、思考探究,獲取新知

  教師依據(jù)學生討論發(fā)言的情況,歸納等腰三角形的性質(zhì):

  ①∠B=∠C→兩個底角相等。

  ②BD=CD→AD為底邊BC上的中線。

  ③∠BAD=∠CAD→AD為頂角∠BAC的平分線。

  ∠ADB=∠ADC=90°→AD為底邊BC上的高。

  指導學生用語言敘述上述性質(zhì)。

  性質(zhì)1等腰三角形的兩個底角相等(簡寫成:“等邊對等角”)。

  性質(zhì)2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡記為:“三線合一”)。

  教師指導對等腰三角形性質(zhì)的證明。

  1、證明等腰三角形底角的性質(zhì)。

  教師要求學生根據(jù)猜想的結(jié)論畫出相應的圖形,寫出已知和求證。在引導學生分析思路時強調(diào):

  (1)利用三角形全等來證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個三角形。

  (2)添加輔助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。

  2、證明等腰三角形“三線合一”的性質(zhì)。

  【教學說明】在證明中,設計輔助線是關(guān)鍵,引導學生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來的條件是不同的,重視這一點,要求學生板書證明過程,以體會一題多解帶來的體驗。

  三、典例精析,掌握新知

  例如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

  解:∵AB=AC,BD=BC=AD,

  ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對等角)。

  設∠A=x,則∠BDC=∠A+∠ABD=2x,

  從而∠ABC=∠C=∠BDC=2x。

  于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°

  于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

  【教學說明】等腰三角形“等邊對等角”及“三線合一”性質(zhì),可以實現(xiàn)由邊到角的轉(zhuǎn)化,從而可求出相應角的度數(shù)。要在解題過程中,學會從復雜圖形中分解出等腰三角形,用方程思想和數(shù)形結(jié)合思想解決幾何問題。

  四、運用新知,深化理解

  第1組練習:

  1、如圖,在下列等腰三角形中,分別求出它們的底角的`度數(shù)。

  如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。

  2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。

  第2組練習:

  1、如果△ABC是軸對稱圖形,則它一定是( )

  A、等邊三角形

  B、直角三角形

  C、等腰三角形

  D、等腰直角三角形

  2、等腰三角形的一個外角是100°,它的頂角的度數(shù)是( )

  A、80° B、20°

  C、80°和20° D、80°或50°

  3、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm。求這個等腰三角形的邊長。

  4、如圖,在△ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。

  【教學說明】

  等腰三角形解邊方面的計算類型較多,引導學生見識不同類型,并適時概括歸納,幫學生形成解題能力,注意提醒學生分類討論思想的應用。

  【答案】

  第1組練習答案:

  1、(1)72°;(2)30°

  2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

  3、∠B=77°,∠C=38、5°

  第2組練習答案:

  1、C

  2、C

  3、設三角形的底邊長為xcm,則其腰長為(x+2)cm,根據(jù)題意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三邊長為4cm,6cm和6cm。

  4、延長CD交AB的延長線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可證:AE=DE。∴AE=CE。

  四、師生互動,課堂小結(jié)

  這節(jié)課主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應用。請學生表述性質(zhì),提醒每個學生要靈活應用它們。

  學生間可交流體會與收獲。

八年級數(shù)學的教案13

  一、學習目標

  二、學習過程

  閱讀教材

  獨立完成下列預習作業(yè):

  1、觀察下列算式:

  ⑴ ⑵

  請寫出分數(shù)的乘除法法則:

  乘法法則:分子乘以分子作為積的分子、分母乘以分母作為積的分母;

  除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù).

  2、分式的.乘除法法則:(類似于分數(shù)乘除法法則)

  乘法法則:分子乘以分子作為積的分子、分母乘以分母作為積的分母;

  除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù).

  3、分式乘方:即分式乘方,是把分子、分母分別乘方.

  三、合作交流,解決問題:

  1、計算:

  ⑴ ; ⑵

  2、計算:

  ⑴ ; ⑵ .

  4、計算:⑴ ⑵

  四、課堂測控:

  1、計算:

八年級數(shù)學的教案14

  一、學習目標

  二、學習過程

  閱讀教材

  獨立完成下列預習作業(yè):

  1、填空:

  ①與的相同,稱為分數(shù),+ =,法則是;

  ②與的不同,稱為分數(shù),+ =,運算方法為;

  2、與的相同,稱為分式;與的不同,稱為分式.

  3、分式的加減法法則同分數(shù)的.加減法法則類似

  ①同分母分式相加減,分母,把分子;

  ②異分母分式相加減,先,變?yōu)橥帜傅姆质剑?

  4.,的最簡公分母是.

  5、在括號內(nèi)填入適當?shù)拇鷶?shù)式:

  三、合作交流,解決問題:

  1、計算:⑴ + ⑵ - ⑶ +

  2、計算:⑴ ⑵ +

  ⑶ ⑷ + +

  3、計算:

  四、課堂測控:

  3、計算:⑴ ⑵

八年級數(shù)學的教案15

  首先通過對問題的思考與解答,回顧總結(jié)梳理本章所學的知識,將所學的知識與以前學過的知識進行緊密聯(lián)結(jié)。通過思考,知識得到內(nèi)化,認知結(jié)構(gòu)得到進一步完善。回憶本章內(nèi)容,建立知識結(jié)構(gòu)圖。通過練習把知識加以鞏固。

  教學目標

  知識與技能

  1.反比例函數(shù)的圖象和性質(zhì)。

  2.能根據(jù)所給的條件,確定反比例函數(shù),體會函數(shù)在實際問題中的應用價值。

  3.反比例函數(shù)的應用:解決實際問題,學科內(nèi)部的應用。

  過程與方法

  1.反思在具體問題中探索數(shù)量關(guān)系和變化規(guī)律的過程,理解反比例函數(shù)的概念,領會反比例函數(shù)作為一種數(shù)學模型的意義。

  2.能畫出反比例函數(shù)的圖象,并根據(jù)圖象和解析式掌握反比例函數(shù)的.主要性質(zhì)。

  3.提高觀察、分析、歸納的能力,感悟數(shù)形結(jié)合的數(shù)學思想方法。

  情感、態(tài)度與價值觀

  1.面對困難,樹立克服困難的勇氣和戰(zhàn)勝困難的信心。

  2.養(yǎng)成合作交流意識和運用數(shù)學問題解決實際問題的意識,認識數(shù)學的實用性。

  教學重點和難點

  重點是:反比例函數(shù)的概念、圖象和主要性質(zhì)。

  難點是:對反比例函數(shù)意義的理解。

  教學方法

  啟發(fā)引導、小組討論

  課時安排

  1課時

  教學媒體

  課件

  教學過程設計

  (一)創(chuàng)設問題情境,引入新課

  問題l:你能舉出現(xiàn)實生活中有關(guān)反函數(shù)的幾個例子嗎?

【八年級數(shù)學的教案】相關(guān)文章:

數(shù)學八年級上冊教案03-02

八年級數(shù)學的教案12-30

有關(guān)八年級數(shù)學教案八年級數(shù)學教案全套10-03

八年級數(shù)學下冊教案01-10

八年級數(shù)學教案12-04

初中數(shù)學八年級上冊教案02-06

八年級數(shù)學上冊教案02-27

八年級數(shù)學教案優(yōu)秀07-27

數(shù)學八年級上冊教案15篇03-02

數(shù)學八年級上冊教案(15篇)03-02

国产v亚洲v天堂无码网站,综合亚洲欧美日韩一区二区,精品一级毛片A久久久久,欧美一级待黄大片视频
色婷婷婷亚洲综合丁香五月 | 亚洲蜜芽AV中文在线 | 婷婷色香合缴缴情 | 久久se精品一区二区三区 | 综合久久五月婷婷 | 日韩中文精品在线 |