精選八年級數學教案(通用10篇)
作為一名為他人授業解惑的教育工作者,時常會需要準備好教案,教案是教學藍圖,可以有效提高教學效率。那么優秀的教案是什么樣的呢?下面是小編整理的八年級數學教案,希望能夠幫助到大家。
八年級數學教案 篇1
一、學習目標及重、難點:
1、了解方差的定義和計算公式。
2、理解方差概念的產生和形成的過程。
3、會用方差計算公式來比較兩組數據的波動大小。
重點:方差產生的必要性和應用方差公式解決實際問題。
難點:理解方差公式
二、自主學習:
(一)知識我先懂:
方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是
我們用它們的.平均數,表示這組數據的方差:即用
來表示。
給力小貼士:方差越小說明這組數據越 。波動性越 。
(二)自主檢測小練習:
1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。
2、甲、乙兩組數據如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12
分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小
三、新課講解:
引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: )
(2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )
歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是
我們用它們的平均數,表示這組數據的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?、
測試次數 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強 10 13 16 14 12
給力提示:先求平均數,在利用公式求解方差。
(二)小試身手
1、甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數據的眾數:
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?
四、課堂小結
方差公式:
給力提示:方差越小說明這組數據越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數,是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業:必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題
七、學習小札記:
寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!
八年級數學教案 篇2
一、教學目標
1.靈活應用勾股定理及逆定理解決實際問題。
2.進一步加深性質定理與判定定理之間關系的認識。
二、重點、難點
1.重點:靈活應用勾股定理及逆定理解決實際問題。
2.難點:靈活應用勾股定理及逆定理解決實際問題。
三、課堂引入
創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法。
四、例習題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°
小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識
例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。
分析:⑴若判斷三角形的`形狀,先求三角形的三邊長;
⑵設未知數列方程,求出三角形的三邊長5、12、13;
⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形。
解略
本題幫助培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識。
八年級數學教案 篇3
一、學習目標
1.使學生了解運用公式法分解因式的意義;
2.使學生掌握用平方差公式分解因式
二、重點難點
重點:掌握運用平方差公式分解因式。
難點:將單項式化為平方形式,再用平方差公式分解因式。
學習方法:歸納、概括、總結。
三、合作學習
創設問題情境,引入新課
在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的'相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。
1.請看乘法公式
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
補充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習
教科書練習。
六、作業
1、教科書習題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級數學教案 篇4
一、學習目標
1.多項式除以單項式的運算法則及其應用。
2.多項式除以單項式的運算算理。
二、重點難點
重點:多項式除以單項式的運算法則及其應用。
難點:探索多項式與單項式相除的運算法則的過程。
三、合作學習
(一)回顧單項式除以單項式法則
(二)學生動手,探究新課
1.計算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy。
2.提問:
①說說你是怎樣計算的;
②還有什么發現嗎?
(三)總結法則
1.多項式除以單項式:先把這個多項式的每一項除以XXXXXXXXXXX,再把所得的商XXXXXX
2.本質:把多項式除以單項式轉化成XXXXXXXXXXXXXX
四、精講精練
例:(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
隨堂練習:教科書練習。
五、小結
1、單項式的除法法則
2、應用單項式除法法則應注意:
A、系數先相除,把所得的'結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號;
B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;
C、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;
D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行;
E、多項式除以單項式法則。
八年級數學教案 篇5
一、教學目標:
1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量。
2、會求一組數據的極差。
二、重點、難點和難點的突破方法
1、重點:會求一組數據的極差。
2、難點:本節課內容較容易接受,不存在難點。
三、課堂引入:
下表顯示的是上海2001年2月下旬和2002年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法。
經計算可以看出,對于2月下旬的這段時間而言,2001年和2002年上海地區的平均氣溫相等,都是12度。
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據兩段時間的.氣溫情況可繪成的折線圖。
觀察一下,它們有區別嗎?說說你觀察得到的結果。
用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍,用這種方法得到的差稱為極差。
四、例習題分析
本節課在教材中沒有相應的例題,教材P152習題分析
問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大,問題2涉及前一個學期統計知識首先應回憶復習已學知識,問題3答案并不唯一,合理即可。
八年級數學教案 篇6
一、學習目標:
1.經歷探索平方差公式的過程。
2.會推導平方差公式,并能運用公式進行簡單的運算。
二、重點難點
重點:平方差公式的.推導和應用;
難點:理解平方差公式的結構特征,靈活應用平方差公式。
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)2001×1999(2)998×1002
導入新課:計算下列多項式的積。
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運用平方差公式計算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:計算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習
計算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小結
(a+b)(a—b)=a2—b2
八年級數學教案 篇7
一、教材分析
1、特點與地位:重點中的重點。
本課是教材求兩結點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通訊網絡等方面具有一定的實用意義。
2、重點與難點:結合學生現有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:
(1)重點:如何將現實問題抽象成求解最短路徑問題,以及該問題的解決方案。
(2)難點:求解最短路徑算法的程序實現。
3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結點的最短路徑,另一種是求每一對結點之間的最短路徑。根據教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結合,逐步推動教學過程。
二、教學目標分析
1、知識目標:掌握最短路徑概念、能夠求解最短路徑。
2、能力目標:
(1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養學生的數據抽象能力。
(2)通過旅游景點線路選擇問題的解決,培養學生的獨立思考、分析問題、解決問題的能力。
3、素質目標:培養學生講究工作方法、與他人合作,提高效率。
三、教法分析
課前充分準備,研讀教材,查閱相關資料,制作多媒體課件。教學過程中除了使用傳統的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發的方式展開教學。由于本節課的內容屬于圖這一章的難點,考慮學生的`接受能力,注意與學生溝通,根據學生的反應控制好教學進度是本節課成功的關鍵。
四、學法指導
1、課前上次課結課時給學生布置任務,使其有針對性的預習。
2、課中指導學生討論任務解決方法,引導學生分析本節課知識點。
3、課后給學生布置同類型任務,加強練習。
五、教學過程分析
(一)課前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。
教學方法及注意事項:
(1)采用提問方式,注意及時小結,提問的目的是幫助學生回憶概念。
(2)提示學生“溫故而知新”,養成良好的學習習慣。
(二)導入新課(3~5分鐘)以城市公路網為例,基于求兩個點間最短距離的實際需要,引出本課教學內容“求最短路徑問題”。教學方法及注意事項:
(1)先講實例,再指出概念,既可以吸引學生注意力,激發學習興趣,又可以實現教學內容的自然過渡。
(2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。
(三)講授新課(25~30分鐘)
1、求某一結點到其他各結點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。
(1)將實際問題抽象成圖中求任一結點到其他結點最短路徑問題。(3~5分鐘)教學方法及注意事項:
①主要采用講授法,將實際問題用圖形表示出來。語言描述轉換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。
②注意示范畫圖只進行一部分,讓學生獨立思考、自主完成余下部分的轉化。
③及時總結,原型抽象(景點作為圖的結點,景點間的線路作為圖的邊,旅途費用作為邊的權值),將案例求解問題抽象成求圖中某一結點到其他各結點的最短路徑問題。
④利用多媒體課件,向學生展示一張帶權有向圖,并略作解釋,為后續教學做準備。
教學方法及注意事項:
①啟發式教學,如何實現按路徑長度遞增產生最短路徑?
②結合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。
(四)課堂小結(3~5分鐘)
1、明確本節課重點
2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?
(五)布置作業
1、書面作業:復習本次課內容,準備一道備用習題,靈活把握時間安排。
六、教學特色
以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現所講內容的實用性,提高學生的學習興趣。
八年級數學教案 篇8
八年級下數學教案-變量與函數(2)
一、教學目的
1.使學生理解自變量的取值范圍和函數值的意義。
2.使學生理解求自變量的取值范圍的兩個依據。
3.使學生掌握關于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并會求其函數值。
4.通過求函數中自變量的.取值范圍使學生進一步理解函數概念。
二、教學重點、難點
重點:函數自變量取值的求法。
難點:函靈敏處變量取值的確定。
三、教學過程
復習提問
1.函數的定義是什么?函數概念包含哪三個方面的內容?
2.什么叫分式?當x取什么數時,分式x+2/2x+3有意義?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的條件是什么?
(答:根指數是2的根式叫二次根式,使二次根式成立的條件是被開方數≥0。)
4.舉出一個函數的實例,并指出式中的變量與常量、自變量與函數。
新課
1.結合同學舉出的實例說明解析法的意義:用教學式子表示函數方法叫解析法。并指出,函數表示法除了解析法外,還有圖象法和列表法。
2.結合同學舉出的實例,說明函數的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據是:
(1)自變量取值范圍是使函數解析式(即是函數表達式)有意義。
(2)自變量取值范圍要使實際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結合例3引出函數值的意義。并指出兩點:
(1)例3中的4個小題歸納起來仍是三類題型。
(2)求函數值的問題實際是求代數式值的問題。
補充例題
求下列函數當x=3時的函數值:
(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結
1.解析法的意義:用數學式子表示函數的方法叫解析法。
2.求函數自變量取值范圍的兩個方法(依據):
(1)要使函數的解析式有意義。
①函數的解析式是整式時,自變量可取全體實數;
②函數的解析式是分式時,自變量的取值應使分母≠0;
③函數的解析式是二次根式時,自變量的取值應使被開方數≥0。
(2)對于反映實際問題的函數關系,應使實際問題有意義。
3.求函數值的方法:把所給出的自變量的值代入函數解析式中,即可求出相慶原函數值。
練習:P94中1,2,3。
作業:P95~P96中A組3,4,5,6,7。B組1,2。
四、教學注意問題
1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。
2.注意訓練與培養學生的優質聯想能力。要求學生仿照例題自編題目是有效手段。
3.注意培養學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。
八年級數學教案 篇9
教學目標
1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用。
2.經歷實際問題-分式方程方程模型的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養學生的應用意識。
3.在活動中培養學生樂于探究、合作學習的習慣,培養學 生努力尋找 解決問題的進取心,體會數學的應用價值。
教學重點:
將實際問題中的等量 關系用分式方程表示
教學難點:
找實際問題中的等量關系
教學過程:
情境導入:
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的`產量。你能找出這一問題中的所有等量關系嗎?(分組交流)
如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是xxkg。
根據題意,可得方程:
二、講授新課
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關系?
如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為xxh。
根據題意,可得方程:
學生分組探討、交流,列出方程。
三、做一做:
為了幫助遭受自然災害的地區重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?
四、議一議:
上面所得到的方程有什么共同特點?
分母中含有未知數的方程叫做分式方程
分式方程與整式方程有什么區別?
五、 隨堂練習
(1)據聯合國《2003年全球投資 報告》指出,中國2002年吸收外國投資額 達530億美元,比上一年增加了13%。設2001年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?
(2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度
(3)根據分式方程 編一道應用題,然后同組交流,看誰編得好
六、學 習小結
本節課你學到了哪些知識?有什么感想?
七、作業布置
八年級數學教案 篇10
教學目標:
1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。
2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。
3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。
4、能利和計算器求一組數據的算術平均數。
教學重點:體會平均數、中位數、眾數在具體情境中的意義和應用。
教學難點:對于平均數、中位數、眾數在不同情境中的應用。
教學方法:歸納教學法。
教學過程:
一、知識回顧與思考
1、平均數、中位數、眾數的概念及舉例。
一般地對于n個數X1,……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。
如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。
中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。
眾數就是一組數據中出現次數最多的那個數據。
如3,2,3,5,3,4中3是眾數。
2、平均數、中位數和眾數的特征:
(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。
(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。
(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。
(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。
3、算術平均數和加權平均數有什么區別和聯系:
算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。
4、利用計算器求一組數據的平均數。
利用科學計算器求平均數的方法計算平均數。
二、例題講解:
例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統計了這15人某月的銷售量如下:
每人銷售件數 1800 510 250 210 150 120
人數 113532
(1)求這15位營銷人員該月銷售量的'平均數、中位數和眾數;
(2)假設銷售部負責人把每位營銷員的月銷售額定為平均數,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。
例2,某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?
三、課堂練習:復習題A組
四、小結:
1、掌握平均數、中位數與眾數的概念及計算。
2、理解算術平均數與加權平均數的聯系與區別。
五、作業:復習題B組、C組(選做)
【八年級數學教案】相關文章:
有關八年級數學教案八年級數學教案全套10-03
八年級數學教案12-04
【熱門】八年級數學教案01-31
【薦】八年級數學教案01-17
八年級數學教案【熱門】01-18
【熱】八年級數學教案01-18
八年級上冊數學教案01-13
【推薦】八年級數學教案01-31
八年級數學教案【薦】02-01
八年級數學教案【精】02-01