- 相關推薦
平方差公式第一課時教學反思
平方差公式(1)教學反思
教學目標:1會推導平方差公式,并能運用公式進行簡單的計算.
2.經歷探索平方差公式的過程,認識“特殊”與“一般”的關系,了解“特殊到一般”的認識規律和數學發現方法。
教材分析:
重點:公式的理解與正確運用(考點:此公式很關鍵,一定要搞清楚特征,在以后的學習中還繼續應用)
難點:公式的理解與正確運用
教法:自主探究和合作交流
教學過程:
一、檢測
(1)(x+2)(x-2) (2)(1+2y)(1-2y) (3)(x+3y)(x-3y)
解:原式=x2-2x+2x+22 原式=12-2y+2y+(2y)2 原式=x2-3xy+3xy+(3y)2
=x2-22 =12-(2y)2 =x2-(3y)2
二、新課講授
1. 請大家觀察以上3個算式的特點和運算結果的特點,對比等號兩邊代數式的結構,你發現了什么?
學生分組討論,交流,小組長回答問題。
師生共同總結歸納:
平方差公式:(a+b)(a-b)=a2-b2
即兩數 和 與兩數 差 的積,等于它們的平方差。
平方差公式特征:
(1)一組完全相同的項;
(2)一組互為相反數的項
2.例題
(1)(5+6x)(5-6x) (2)(-m+n)(-m-n)
解:原式=25-36x2 解:原式= m2- n2
3.公式應用
(1)(a+2)(a-2) (2)(-x+2y)(-x-3y)
兩個學生板演,其余學生在練習本上自己獨立完成
老師巡視,輔導學困生。
三、拓展延伸
1.計算(1)(a+1)(a-1)(a2+1) (2)(a+b)(a-b)(a2+ b2)
師生共同分析:此題特征,兩次利用平方差公式。
學生在練習本上獨立完成,同桌互相檢查。
2. (ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?
學生分組討論交流,獨立完成運算。
四、堂測
1、(ab+8)(ab-8) 2、(5m-n)(-5m-n)
3、(3x+4y-z)(3x-4y+z) 4、(a+b)(a-b)(a2+ b2)
五、小結
1、什么是平方差公式?
2、運用公式要注意的問題:
(1)平方差公式運用的條件是什么?
(2)公式中的a、b可以代表什么?
六、板書設計:
平方差公式(1)
一、檢測導入
二、例題展示
三、拓展延伸
四、達標堂測
五、歸納小結
平方差公式:(a+b)(a-b)=a2-b2
即兩數 和 與兩數 差 的積,等于它們的平方差。
六、布置作業
P21:習題1.9 1、2
教學反思:
平方差公式是多項式乘法運算中一個重要的公式,是特殊的多項式與多項式相乘的一種簡便計算。通過復習多項式乘以多項式的計算導入新課,為探究新知識奠定基礎。在重難點處設計問題:“觀察以上3個算式的特點和運算結果的特點,對比等號兩邊代數式的結構,你發現了什么?”讓學生發現規律并嘗試運用自己的語言來描述。問題提出后,學生能積極進行分組討論、交流,各組小組長闡述自己小組討論的結果。大多數的學生能找出規律,說出大概意思,但是無法用精準的語言完整的描述出來,語言表達無條理、含糊。針對這種情況,在以后的課堂教學過程中要注意加強對學生的邏輯思維能力和語言表達能力的培養。最后經過師生的共同努力,得出了平方差公式以及公式的特征。
在例題展示環節中,我通過2道例題的運算,訓練學生正確應用公式進行計算,體會公式在簡化運算中的作用。實踐練習的設計,使學生從不同角度認識平方差公式,進一步加強學生對公式的理解。在運用公式時,學生基本掌握運用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項,最后運用平方差公式運算。拓展延伸環節中,學生通過尋找算式中的a,b項,慢慢發現a,b項不僅可以代表數,也可以代表單項式、多項式等代數式,這樣設計可以進一步深化學生對字母含義的理解。在學生獨立完成練習和堂測中,經過巡視,我發現近三分之一的學生對較復雜的多項式不能準確找出a,b項,特別是b項代表多項式時,負數去括號時出錯較多。
最后通過設計遞進式的問題串,引導學生自己一步步總結出本節課所學的知識內容,從而培養他們的歸納總結和語言表達能力。
本節課采用學習小組討論、交流的學習方式,讓學優生帶動學困生,整體教學效果良好,學生基本掌握平方差公式的運用,對于較復雜的a、b項的運算,在自習課上將加強練習。
【平方差公式第一課時教學反思】相關文章:
《平方差公式》教學反思05-06
平方差公式05-02
平方差公式的靈活應用05-01
《平方差公式》教學設計(通用13篇)09-27
數學教案-平方差公式05-02
初中數學平方差公式教案01-10
《乘法公式》教學反思04-02
乘法公式教學反思05-07
初中數學平方差公式教案2篇02-16
倍角公式教學反思04-03